Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ultra-shortwave communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6695 KB  
Article
Optimizing the Egli Model for Vehicular Ultra-Shortwave Communication Using High-Resolution Remote Sensing Satellite Imagery
by Guangshuo Zhang, Peng Chen, Fulin Wu, Yangzhen Qin, Qi Xu, Tianao Li, Shiwei Zhang and Hongmin Lu
Sensors 2025, 25(17), 5242; https://doi.org/10.3390/s25175242 - 23 Aug 2025
Viewed by 527
Abstract
The traditional radio wave propagation models exhibit several limitations when they are employed to predict the path loss for vehicular ultra-shortwave wireless communication. To addresses these challenges, an optimized approach for Egli model based on the high-resolution remote sensing satellite image is proposed [...] Read more.
The traditional radio wave propagation models exhibit several limitations when they are employed to predict the path loss for vehicular ultra-shortwave wireless communication. To addresses these challenges, an optimized approach for Egli model based on the high-resolution remote sensing satellite image is proposed in this study. The optimization process includes three components. First, a method for calculating the actual equivalent antenna height is introduced, utilizing high-precision remote sensing satellite imagery to obtain communication path profiles. This method accounts for the antenna’s physical length, vehicular height, and local terrain characteristics, thereby providing an accurate representation of the antenna’s effective height within its operational environment. Second, an equivalent substitution method for ground loss is developed, utilizing surface information derived from high-precision remote sensing satellite images. This method integrates ground loss directly into the Egli model’s calculation process, eliminating the need for separate computations and simplifying the model. Third, leveraging the Egli model as a foundation, the least squares method (LSM) is employed to fit the relief height, ensuring the model meets the requirements for ultra-short wave communication distances under line-of-sight (LOS) conditions and enhances suitability for real-world vehicular communication systems. Finally, the validity and accuracy of the optimization model are verified by comparing the measured data with the theoretical calculated values. Compared with the Egli model, the Egli model with additional correction factors, and the measured data, the average error of the optimized model is reduced by 8.98%, 2.09%, and the average error is 0.45%. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

12 pages, 3384 KB  
Article
A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability
by Yongtu Zou, Shaolin Zhou, Jingxi Li, Shanri Chen and Zhijian Chen
Nanomaterials 2024, 14(15), 1316; https://doi.org/10.3390/nano14151316 - 5 Aug 2024
Cited by 5 | Viewed by 2515
Abstract
Metasurfaces have emerged as a unique group of two-dimensional ultra-compact subwavelength devices for perfect wave absorption due to their exceptional capabilities of light modulation. Nonetheless, achieving high absorption, particularly with multi-band broadband scalability for specialized scenarios, remains a challenge. As an example, the [...] Read more.
Metasurfaces have emerged as a unique group of two-dimensional ultra-compact subwavelength devices for perfect wave absorption due to their exceptional capabilities of light modulation. Nonetheless, achieving high absorption, particularly with multi-band broadband scalability for specialized scenarios, remains a challenge. As an example, the presence of atmospheric windows, as dictated by special gas molecules in different infrared regions, highly demands such scalable modulation abilities for multi-band absorption and filtration. Herein, by leveraging the hybrid effect of Fabry–Perot resonance, magnetic dipole resonance and electric dipole resonance, we achieved multi-broadband absorptivity in three prominent infrared atmospheric windows concurrently, with an average absorptivity of 87.6% in the short-wave infrared region (1.4–1.7 μm), 92.7% in the mid-wave infrared region (3.2–5 μm) and 92.4% in the long-wave infrared region (8–13 μm), respectively. The well-confirmed absorption spectra along with its adaptation to varied incident angles and polarization angles of radiations reveal great potential for fields like infrared imaging, photodetection and communication. Full article
(This article belongs to the Special Issue Nonlinear Optics of Nanostructures and Metasurfaces)
Show Figures

Figure 1

20 pages, 1114 KB  
Article
An Instrument for In Situ Measuring the Volume Scattering Function of Water: Design, Calibration and Primary Experiments
by Cai Li, Wenxi Cao, Jing Yu, Tiancun Ke, Guixin Lu, Yuezhong Yang and Chaoying Guo
Sensors 2012, 12(4), 4514-4533; https://doi.org/10.3390/s120404514 - 10 Apr 2012
Cited by 12 | Viewed by 8451
Abstract
The optical volume scattering function (VSF) of seawater is a fundamental property used in the calculation of radiative transfer for applications in the study of the upper-ocean heat balance, the photosynthetic productivity of the ocean, and the chemical transformation of photoreactive compounds. A [...] Read more.
The optical volume scattering function (VSF) of seawater is a fundamental property used in the calculation of radiative transfer for applications in the study of the upper-ocean heat balance, the photosynthetic productivity of the ocean, and the chemical transformation of photoreactive compounds. A new instrument to simultaneously measure the VSF in seven directions between 20° to 160°, the attenuation coefficient, and the depth of water is presented. The instrument is self-contained and can be automatically controlled by the depth under water. The self-contained data can be easily downloaded by an ultra-short-wave communication system. A calibration test was performed in the laboratory based on precise estimation of the scattering volume and optical radiometric calibration of the detectors. The measurement error of the VSF measurement instrument has been estimated in the laboratory based on the Mie theory, and the average error is less than 12%. The instrument was used to measure and analyze the variation characteristics of the VSF with angle, depth and water quality in Daya Bay for the first time. From these in situ data, we have found that the phase functions proposed by Fournier-Forand, measured by Petzold in San Diego Harbor and Sokolov in Black Sea do not fit with our measurements in Daya. These discrepancies could manly due to high proportion of suspended calcium carbonate mineral-like particles with high refractive index in Daya Bay. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

Back to TopTop