Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ultralight bosons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1540 KB  
Review
Gravitational Waves: Echoes of the Biggest Bangs Since the Big Bang and/or BSM Physics?
by John Ellis
Universe 2025, 11(7), 213; https://doi.org/10.3390/universe11070213 - 26 Jun 2025
Viewed by 759
Abstract
“If one could ever prove the existence of gravitational waves, the processes responsible for their generation would probably be much more curious and interesting than even the waves themselves.” (Gustav Mie, 1868–1957). The discovery of gravitational waves has opened new windows on [...] Read more.
“If one could ever prove the existence of gravitational waves, the processes responsible for their generation would probably be much more curious and interesting than even the waves themselves.” (Gustav Mie, 1868–1957). The discovery of gravitational waves has opened new windows on astrophysics, cosmology and physics beyond the Standard Model (BSM). Measurements by the LIGO, Virgo and KAGRA Collaborations of stellar–mass binaries and neutron star mergers have shown that gravitational waves travel at close to the velocity of light and constrain BSM possibilities, such as a graviton mass and Lorentz violation in gravitational wave propagation. Follow-up measurements of neutron star mergers have provided evidence for the production of heavy elements, possibly including some essential for human life. The gravitational waves in the nanoHz range observed by Pulsar Timing Arrays (PTAs) may have been emitted by supermassive black hole binaries, but might also have originated from BSM cosmological scenarios such as cosmic strings, or phase transitions in the early Universe. The answer to the question in the title may be provided by gravitational-wave detectors at higher frequencies, such as LISA and atom interferometers. KCL-PH-TH/2024-05. Full article
Show Figures

Figure 1

28 pages, 5203 KB  
Article
Fermion Proca Stars: Vector-Dark-Matter-Admixed Neutron Stars
by Cédric Jockel and Laura Sagunski
Particles 2024, 7(1), 52-79; https://doi.org/10.3390/particles7010004 - 9 Jan 2024
Cited by 14 | Viewed by 3610
Abstract
Dark matter could accumulate around neutron stars in sufficient amounts to affect their global properties. In this work, we study the effect of a specific model for dark matter—a massive and self-interacting vector (spin-1) field—on neutron stars. We describe the combined systems of [...] Read more.
Dark matter could accumulate around neutron stars in sufficient amounts to affect their global properties. In this work, we study the effect of a specific model for dark matter—a massive and self-interacting vector (spin-1) field—on neutron stars. We describe the combined systems of neutron stars and vector dark matter using Einstein–Proca theory coupled to a nuclear matter term and find scaling relations between the field and metric components in the equations of motion. We construct equilibrium solutions of the combined systems, compute their masses and radii, and also analyze their stability and higher modes. The combined systems admit dark matter (DM) core and cloud solutions. Core solutions compactify the neutron star component and tend to decrease the total mass of the combined system. Cloud solutions have the inverse effect. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. This could make Buchdahl-limit-violating objects smoking gun signals for dark matter in neutron stars. The self-interaction strength is found to significantly affect both mass and radius. We also compare fermion Proca stars to objects where the dark matter is modeled using a complex scalar field. We find that fermion Proca stars tend to be more massive and geometrically larger than their scalar field counterparts for equal boson masses and self-interaction strengths. Both systems can produce degenerate masses and radii for different amounts of DM and DM particle masses. Full article
Show Figures

Figure 1

17 pages, 349 KB  
Article
Galaxy Phase-Space Density Data Preclude That Bose–Einstein Condensate Be the Total Dark Matter
by Héctor J. de Vega and Norma G. Sanchez
Universe 2022, 8(8), 419; https://doi.org/10.3390/universe8080419 - 11 Aug 2022
Cited by 13 | Viewed by 2650
Abstract
Ultralight scalars with a typical mass of the order m1022 eV and light scalars forming a Bose–Einstein condensate (BEC) exhibit a Jeans length in the kpc scale and were therefore proposed as dark matter (DM) candidates. Our treatment here [...] Read more.
Ultralight scalars with a typical mass of the order m1022 eV and light scalars forming a Bose–Einstein condensate (BEC) exhibit a Jeans length in the kpc scale and were therefore proposed as dark matter (DM) candidates. Our treatment here is generic, independent of the particle physics model and applies to all DM BEC, in both in or out of equilibrium situations. Two observed quantities crucially constrain DM in an inescapable way: the average DM density ρDM and the phase-space density Q. The observed values of ρDM and Q in galaxies today constrain both the possibility to form a BEC, and the DM mass m. These two constraints robustly exclude the axion DM that decouples after inflation. Moreover, the value m1022 eV can only be obtained with a number of ultrarelativistic degrees of freedom at decoupling in the trillions, which is impossible for decoupling in the radiation dominated era. In addition, we find for the axion vacuum misalignment scenario that axions are produced strongly out of thermal equilibrium and that the axion mass in such a scenario turns to be 17 orders of magnitude too large to reproduce the observed galactic structures. Moreover, we also consider inhomogenous gravitationally bounded BEC’s supported by the bosonic quantum pressure independently of any particular particle physics scenario. For a typical size R kpc and compact object masses M107M they remarkably lead to the same particle mass m1022 eV as the BEC free-streaming length. However, the phase-space density for the gravitationally bounded BEC’s turns out to be more than sixty orders of magnitude smaller than the galaxy-observed values. We conclude that the BEC cannot be the total DM. The axion can be candidates to be only part of the DM of the universe. Besides, an axion in the mili-eV scale may be a relevant source of dark energy through the zero point cosmological quantum fluctuations. Full article
(This article belongs to the Collection Women Physicists in Astrophysics, Cosmology and Particle Physics)
26 pages, 896 KB  
Review
Search Methods for Continuous Gravitational-Wave Signals from Unknown Sources in the Advanced-Detector Era
by Rodrigo Tenorio, David Keitel and Alicia M. Sintes
Universe 2021, 7(12), 474; https://doi.org/10.3390/universe7120474 - 4 Dec 2021
Cited by 49 | Viewed by 4143
Abstract
Continuous gravitational waves are long-lasting forms of gravitational radiation produced by persistent quadrupolar variations of matter. Standard expected sources for ground-based interferometric detectors are neutron stars presenting non-axisymmetries such as crustal deformations, r-modes or free precession. More exotic sources could include decaying ultralight [...] Read more.
Continuous gravitational waves are long-lasting forms of gravitational radiation produced by persistent quadrupolar variations of matter. Standard expected sources for ground-based interferometric detectors are neutron stars presenting non-axisymmetries such as crustal deformations, r-modes or free precession. More exotic sources could include decaying ultralight boson clouds around spinning black holes. A rich suite of data-analysis methods spanning a wide bracket of thresholds between sensitivity and computational efficiency has been developed during the last decades to search for these signals. In this work, we review the current state of searches for continuous gravitational waves using ground-based interferometer data, focusing on searches for unknown sources. These searches typically consist of a main stage followed by several post-processing steps to rule out outliers produced by detector noise. So far, no continuous gravitational wave signal has been confidently detected, although tighter upper limits are placed as detectors and search methods are further developed. Full article
(This article belongs to the Special Issue Continuous Gravitational Waves)
Show Figures

Figure 1

11 pages, 332 KB  
Proceeding Paper
On the Quantum Origin of a Dark Universe
by Saurya Das, Mohit Kumar Sharma and Sourav Sur
Phys. Sci. Forum 2021, 2(1), 55; https://doi.org/10.3390/ECU2021-09289 - 22 Feb 2021
Cited by 1 | Viewed by 2176
Abstract
It has been shown beyond reasonable doubt that the majority (about 95%) of the total energy budget of the universe is given by dark components, namely Dark Matter and Dark Energy. What constitutes these components remains to be satisfactorily understood however, despite a [...] Read more.
It has been shown beyond reasonable doubt that the majority (about 95%) of the total energy budget of the universe is given by dark components, namely Dark Matter and Dark Energy. What constitutes these components remains to be satisfactorily understood however, despite a number of promising candidates. An associated conundrum is that of the coincidence, i.e., the question as to why the Dark Matter and Dark Energy densities are of the same order of magnitude at the present epoch, after evolving over the entire expansion history of the universe. In an attempt to address these, we consider a quantum potential resulting from a quantum corrected Raychaudhuri–Friedmann equation in presence of a cosmic fluid, which is presumed to be a Bose–Einstein condensate (BEC) of ultralight bosons. For a suitable and physically motivated macroscopic ground state wave function of the BEC, we show that a unified picture of the cosmic dark sector can indeed emerge, thus resolving the issue of the coincidence. The effective Dark energy component turns out to be a cosmological constant, by virtue of a residual homogeneous term in the quantum potential. Furthermore, comparison with the observational data gives an estimate of the mass of the constituent bosons in the BEC, which is well within the bounds predicted from other considerations. Full article
(This article belongs to the Proceedings of The 1st Electronic Conference on Universe)
Show Figures

Figure 1

13 pages, 391 KB  
Article
EHT Constraint on the Ultralight Scalar Hair of the M87 Supermassive Black Hole
by Pedro V. P. Cunha, Carlos A. R. Herdeiro and Eugen Radu
Universe 2019, 5(12), 220; https://doi.org/10.3390/universe5120220 - 27 Nov 2019
Cited by 115 | Viewed by 4304
Abstract
Hypothetical ultralight bosonic fields will spontaneously form macroscopic bosonic halos around Kerr black holes, via superradiance, transferring part of the mass and angular momentum of the black hole into the halo. Such a process, however, is only efficient if resonant—when the Compton wavelength [...] Read more.
Hypothetical ultralight bosonic fields will spontaneously form macroscopic bosonic halos around Kerr black holes, via superradiance, transferring part of the mass and angular momentum of the black hole into the halo. Such a process, however, is only efficient if resonant—when the Compton wavelength of the field approximately matches the gravitational scale of the black hole. For a complex-valued field, the process can form a stationary, bosonic field black hole equilibrium state—a black hole with synchronised hair. For sufficiently massive black holes, such as the one at the centre of the M87 supergiant elliptic galaxy, the hairy black hole can be robust against its own superradiant instabilities, within a Hubble time. Studying the shadows of such scalar hairy black holes, we constrain the amount of hair which is compatible with the Event Horizon Telescope (EHT) observations of the M87 supermassive black hole, assuming the hair is a condensate of ultralight scalar particles of mass μ 10 20 eV, as to be dynamically viable. We show the EHT observations set a weak constraint, in the sense that typical hairy black holes that could develop their hair dynamically, are compatible with the observations, when taking into account the EHT error bars and the black hole mass/distance uncertainty. Full article
(This article belongs to the Special Issue Gravitational Lensing and Optical Geometry: A Centennial Perspective)
Show Figures

Figure 1

Back to TopTop