Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,443)

Search Parameters:
Keywords = uniaxial mechanical testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10929 KB  
Article
Influence of Activator Modulus and Water-to-Binder Ratio on Mechanical Properties and Damage Mechanisms of Lithium-Slag-Based Geopolymers
by Shujuan Zhang, Chiyuan Che, Haijun Jiang, Ruiguo Zhang, Yang Liu, Shengqiang Yang and Ning Zhang
Materials 2025, 18(20), 4695; https://doi.org/10.3390/ma18204695 (registering DOI) - 13 Oct 2025
Abstract
The synergistic preparation of geopolymer from lithium slag, fly ash, and slag for underground construction can facilitate the extensive recycling of lithium slag. The effects of different activator moduli and water–binder ratios on the mechanical properties and damage mechanisms of the lithium-slag-based geopolymer [...] Read more.
The synergistic preparation of geopolymer from lithium slag, fly ash, and slag for underground construction can facilitate the extensive recycling of lithium slag. The effects of different activator moduli and water–binder ratios on the mechanical properties and damage mechanisms of the lithium-slag-based geopolymer were investigated by uniaxial compression tests and acoustic emission (AE) monitoring. The results show that, based on a comprehensive evaluation of peak stress, crack closure stress, plastic deformation stress, and elastic modulus, the optimal activator modulus is determined to be 1.0, and the optimal water-to-binder ratio is 0.42. At low modulus values (0.8 and 1.0) and low water–binder ratio (0.42), the AE events exhibit a steady pattern, indicating slow crack initiation and propagation within the geopolymer; with the increasing activator modulus and water-to-binder ratios, the frequency of AE events increases significantly, indicating more-frequent crack propagation and stress mutation within the geopolymer. Similarly, when the modulus is 0.8 or 1.0 and the water–binder ratio is 0.42, the sample presents a macroscopic tensile failure mode; as the modulus and water–binder ratio increase, the sample presents a tensile–shear composite failure mode. The energy evolution laws of geopolymer specimens with different activator moduli and water-to-binder ratios were analyzed, and a damage constitutive model was established. The results indicate that, with optimized mix proportions, the material can be used as a supporting material for underground spaces. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 4295 KB  
Article
Ti-Fe-Based Alloys Modified with Al and Cr for Next-Generation Biomedical Implants
by Katia Itzel Rodríguez-Escobedo, Wilian Jesús Pech-Rodríguez, Zaira Itzel Bedolla-Valdez, Carlos Adrián Calles-Arriaga, José Guadalupe Miranda-Hernández and Enrique Rocha-Rangel
Eng 2025, 6(10), 273; https://doi.org/10.3390/eng6100273 (registering DOI) - 11 Oct 2025
Abstract
Titanium and, in particular, its alloys are widely used in biomedical applications due to their favorable combination of mechanical properties, such as high strength, low density, low elastic modulus, and excellent biocompatibility. In this study, novel titanium-based alloys were developed using powder metallurgy [...] Read more.
Titanium and, in particular, its alloys are widely used in biomedical applications due to their favorable combination of mechanical properties, such as high strength, low density, low elastic modulus, and excellent biocompatibility. In this study, novel titanium-based alloys were developed using powder metallurgy techniques. The chemical composition of the studied alloys was 93%Ti-7%Fe, 90%Ti-7%Fe-3%Al, and 88%Ti-7%Fe-5%Cr. The metallic powders were processed in a planetary mill, uniaxially compacted, and subsequently sintered at 1300 °C during 2 h under an inert atmosphere. The primary objective was to evaluate the corrosion behavior of these alloys in simulated body fluid solutions, as well as to determine some of the properties, such as the relative density, microhardness, and elastic modulus. The resulting microstructures were homogeneous, with micrometer-scale grain sizes and the formation of intermetallic precipitates generated during sintering. Mechanical tests revealed that the Ti-Fe-Cr alloy exhibited the highest microhardness and Young’s modulus values, followed by Ti-Fe and Ti-Fe-Al. These results confirm a strong correlation between hardness and stiffness, showing that Cr enhances mechanical and elastic properties, while Al reduces them. Corrosion tests demonstrated that the alloys possess high resistance and stability in physiological environments, with a low current density, minimal mass loss, and strong performance even under prolonged exposure to acidic conditions. Full article
(This article belongs to the Section Materials Engineering)
21 pages, 19394 KB  
Article
Physio-Mechanical Properties and Meso-Scale Damage Mechanism of Granite Under Thermal Shock
by Kai Gao, Jiamin Wang, Chi Liu, Pengyu Mu and Yun Wu
Energies 2025, 18(20), 5366; https://doi.org/10.3390/en18205366 (registering DOI) - 11 Oct 2025
Abstract
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different [...] Read more.
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different temperatures (20 °C, 150 °C, 300 °C, 450 °C, 600 °C, and 750 °C) were subjected to rapid cooling treatment with liquid nitrogen. After the thermal treatment, a series of tests were conducted on the granite, including wave velocity test, uniaxial compression experiment, computed tomography scanning, and scanning electron microscopy test, to explore the influence of thermal shock on the physical and mechanical parameters as well as the meso-structural damage of granite. The results show that with the increase in heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of granite gradually decrease, while the peak strain gradually increases. Additionally, the failure mode of granite gradually transitions from brittle failure to ductile failure. Through CT scanning experiments, the spatial distribution characteristics of the pore–fracture structure of granite under the influence of different temperature gradients and temperature change rates were obtained, which can directly reflect the damage degree of the rock structure. When the heat treatment temperature is 450 °C or lower, the number of thermally induced cracks in the scanned sections of granite is relatively small, and the connectivity of the cracks is poor. When the temperature exceeds 450 °C, the micro-cracks inside the granite develop and expand rapidly, and there is a gradual tendency to form a fracture network, resulting in a more significant effect of fracture initiation and permeability enhancement of the rock. The research results are of great significance for the development and utilization of hot dry rock and the evaluation of thermal reservoir connectivity and can provide useful references for rock engineering involving high-temperature thermal fracturing. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Dynamic Mechanical Properties and Damage Evolution Mechanism of Polyvinyl Alcohol Modified Alkali-Activated Materials
by Feifan Chen, Yunpeng Liu, Yimeng Zhao, Binghan Li, Yubo Zhang, Yen Wei and Kangmin Niu
Buildings 2025, 15(19), 3612; https://doi.org/10.3390/buildings15193612 - 9 Oct 2025
Viewed by 162
Abstract
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and [...] Read more.
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and an 80 mm diameter split Hopkinson pressure bar (SHPB). Digital image correlation (DIC) was then utilized to study the surface strain field of the composite material, and the crack propagation process during sample failure was analyzed. The experimental results demonstrate that the compressive strength of AAMs diminishes with higher PVA content, while the flexural strength initially increases before decreasing. It is suggested that the optimal PVA content should not exceed 5%. When the strain rate varies from 25.22 to 130.08 s−1, the dynamic compressive strength, dissipated energy, and dynamic compressive increase factor (DCIF) of the samples all exhibit significant strain rate effects. Furthermore, the logarithmic function model effectively fits the dynamic strength evolution pattern of AAMs. DIC observations reveal that, under high strain rates, the crack mode of the samples gradually transitions from tensile failure to a combined tensile–shear multi-crack pattern. Furthermore, the crack propagation rate rises as the strain rate increases, which demonstrates the toughening effect of PVA on AAMs. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

22 pages, 4621 KB  
Article
Determination of the Mechanical Tensile Characteristics of Some 3D-Printed Specimens from NYLON 12 CARBON Fiber Material
by Claudiu Babiș, Andrei Dimitrescu, Sorin Alexandru Fica, Ovidiu Antonescu, Daniel Vlăsceanu and Constantin Stochioiu
Technologies 2025, 13(10), 456; https://doi.org/10.3390/technologies13100456 - 8 Oct 2025
Viewed by 197
Abstract
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, [...] Read more.
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, vertical, and lateral. Each specimen was printed with a soluble SR-30 support material, which was subsequently dissolved in an SCA 1200-HT wash station using heated alkaline solution. Following support removal, all samples underwent thermal annealing at 80 °C for 5 h in the printer’s controlled chamber to eliminate residual moisture and improve structural integrity. The annealed specimens were subjected to uniaxial tensile testing using an Instron 8875 electrohydraulic machine, with strain measured by digital image correlation (DIC) on a speckle-patterned gauge section. Key mechanical properties, including Young’s modulus, Poisson’s ratio, yield strength, and ultimate tensile strength, were determined. Finally, a finite element analysis (FEA) was performed using MSC Visual Nastran for Windows to simulate the tensile loading conditions and assess internal stress distributions for each print orientation. The combined experimental and numerical results confirm the feasibility of using additively manufactured parts in demanding engineering applications. Full article
Show Figures

Figure 1

17 pages, 2845 KB  
Article
Quantitative Mechanisms of Long-Term Drilling-Fluid–Coal Interaction and Strength Deterioration in Deep CBM Formations
by Qiang Miao, Hongtao Liu, Yubin Wang, Wei Wang, Shichao Li, Wenbao Zhai and Kai Wei
Processes 2025, 13(10), 3183; https://doi.org/10.3390/pr13103183 - 7 Oct 2025
Viewed by 295
Abstract
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula [...] Read more.
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula drilling fluid at 60 °C and 10.5 MPa for 0–30 days, followed by uniaxial and triaxial compression tests under confining pressures of 0/5/10/20 MPa. The fracture evolution was tracked using micro-indentation (µ-indentation), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), establishing a relationship between water absorption and strength. The results indicate a sharp decline in mechanical parameters within the first 5 days, after which they stabilized. Uniaxial compressive strength decreased from 36.85 MPa to 22.0 MPa (−40%), elastic modulus from 1.93 GPa to 1.07 GPa (−44%), cohesion from 14.5 MPa to 5.9 MPa (−59%), and internal friction angle from 24.9° to 19.8° (−20%). Even under 20 MPa confining pressure after 30 days, the strength loss reached 43%. Water absorption increased from 6.1% to 7.9%, showing a linear negative correlation with strength, with the slope increasing from −171 MPa/% (no confining pressure) to −808 MPa/% (20 MPa confining pressure). The matrix elastic modulus remained stable at 3.5–3.9 GPa, and mineral composition remained unchanged, confirming that the degradation was due to hydraulic wedging and lubrication of fractures rather than matrix damage. These quantitative thresholds provide direct evidence for predicting wellbore stability in deep CBM drilling. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

24 pages, 11789 KB  
Article
Mechanical Performance Degradation and Microstructural Evolution of Grout-Reinforced Fractured Diorite Under High Temperature and Acidic Corrosion Coupling
by Yuxue Cui, Henggen Zhang, Tao Liu, Zhongnian Yang, Yingying Zhang and Xianzhang Ling
Buildings 2025, 15(19), 3547; https://doi.org/10.3390/buildings15193547 - 2 Oct 2025
Viewed by 269
Abstract
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and [...] Read more.
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and their mechanical degradation and microstructural evolution mechanisms were investigated under coupled high-temperature (25–1000 °C) and acidic corrosion (pH = 2) conditions. Multi-scale characterization techniques, including uniaxial compression strength (UCS) tests, X-ray computed tomography (CT), scanning electron microscopy (SEM), three-dimensional (3D) topographic scanning, and X-ray diffraction (XRD), were employed systematically. The results indicated that the synergistic thermo-acid interaction accelerated mineral dissolution and induced structural reorganization, resulting in surface whitening of specimens and decomposition of HSFAA hydration products. Increasing the prefabricated fracture angles (0–60°) amplified stress concentration at the grout–rock interface, resulting in a reduction of up to 69.46% in the peak strength of the specimens subjected to acid corrosion at 1000 °C. Acidic corrosion suppressed brittle disintegration observed in the uncorroded specimens at lower temperature (25–600 °C) by promoting energy dissipation through non-uniform notch formation, thereby shifting the failure modes from shear-dominated to tensile-shear hybrid modes. Quantitative CT analysis revealed a 34.64% reduction in crack volume (Vca) for 1000 °C acid-corroded specimens compared to the control specimens at 25 °C. This reduction was attributed to high-temperature-induced ductility, which transformed macroscale crack propagation into microscale coalescence. These findings provide critical insights for assessing the durability of grouting reinforcement in post-fire tunnel rehabilitation and predicting the long-term stability of underground structures in chemically aggressive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 4973 KB  
Article
Microstructure Evolution of a TRIP Fe–1.4Si–2.6Mn–0.17C Steel After Intercritical Treating and Its Effect on Mechanical Properties
by Valeria Miranda-Lopez, Manuel Alejandro Beltrán-Zúñiga, Victor M. Lopez-Hirata, Hector J. Dorantes-Rosales and Maribel L. Saucedo-Muñoz
Metals 2025, 15(10), 1096; https://doi.org/10.3390/met15101096 - 1 Oct 2025
Viewed by 256
Abstract
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. [...] Read more.
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. Microstructural analysis was performed by optical microscopy, scanning electron microscopy, and X-ray diffraction. All heat-treated specimens were mechanically characterized by uniaxial tension and Vickers hardness tests. Thermo-Calc software 2024b was used to analyze the microstructure and phases of heat-treated steel. The microstructural characterization results revealed that the phases and microconstituents were ferrite, austenite, cementite, pearlite, and retained austenite. Thermo-Calc results were consistent with the phases and microconstituents identified for each heat-treatment condition. On the other hand, the tension test results showed that the yield strength and ultimate tensile strength ranged between 690 and 820 MPa and 1190–1255 MPa, respectively, for these heat-treated steels. Likewise, Thermo-Calc proved to be a powerful tool for designing intercritical heat treatments for TRIP steels. Full article
Show Figures

Graphical abstract

14 pages, 2606 KB  
Article
Effect of Hydration Time in Saline on the Swelling and Uniaxial Tensile Response of Annulus Fibrosus of the Intervertebral Disc
by Małgorzata Żak and Sylwia Szotek
J. Funct. Biomater. 2025, 16(10), 365; https://doi.org/10.3390/jfb16100365 - 1 Oct 2025
Viewed by 386
Abstract
The intervertebral disc (IVD) is a biphasic tissue in which the extracellular matrix (ECM) acts as a structural scaffold and regulates hydration and solute transport. The influence of hydration on the swelling and mechanical properties of the IVD, particularly the annulus fibrosus (AF), [...] Read more.
The intervertebral disc (IVD) is a biphasic tissue in which the extracellular matrix (ECM) acts as a structural scaffold and regulates hydration and solute transport. The influence of hydration on the swelling and mechanical properties of the IVD, particularly the annulus fibrosus (AF), is not fully described in the literature. Hydration is assumed to affect inter- and intramolecular hydrogen bonding and hydrophilic interactions, thereby modulating tissue mechanics. This study aimed to assess the effect of hydration time on free swelling of AF and its impact on mechanical performance. AF specimens were divided into five groups, hydrated for 0, 10, 20, 30, or 40 min and subjected to uniaxial tensile testing until failure. Swelling-related geometric changes were correlated with tensile properties. Results demonstrated that hydration duration significantly influenced AF’s structural and mechanical characteristics in anterior and posterior IVD regions. Hydration increases rapidly within 10–20 min, causing cross-sections to swell, stress capacity to decrease, and stiffness to remain unchanged. However, after 40 min, the tissue becomes swollen beyond physiological balance. These findings identify hydration duration as a critical factor regulating AF function and provide important insights for experimental standardization, numerical modeling, and hydrogels designed for intervertebral disc regeneration. Full article
(This article belongs to the Special Issue Advanced Functional Biomaterials in Regenerative Medicine)
Show Figures

Figure 1

18 pages, 5858 KB  
Article
Research on Deformation Behavior and Mechanisms of Concrete Under Hygrothermal Coupling Effects
by Mingyu Li, Chunxiao Zhang, Aiguo Dang, Xiang He, Jingbiao Liu and Xiaonan Liu
Buildings 2025, 15(19), 3514; https://doi.org/10.3390/buildings15193514 - 29 Sep 2025
Viewed by 226
Abstract
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were [...] Read more.
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were performed using a uniaxial compression test machine with synchronized multi-scale damage monitoring that integrated digital image correlation (DIC), acoustic emission (AE), and infrared thermography. The results demonstrated that hygrothermal coupling reduced concrete ductility significantly, in which the peak strain decreased from 0.36% (ambient) to 0.25% for both the 100 °C and 200 °C groups, while compressive strength declined to 42.8 MPa (−2.9%) and 40.3 MPa (−8.6%), respectively, with elevated elastic modulus. DIC analysis revealed the temperature-dependent failure mode reconstruction: progressive end cracking (max strain 0.48%) at ambient temperature transitioned to coordinated dual-end cracking with jump-type damage (abrupt principal strain to 0.1%) at 100 °C and degenerated to brittle fracture oriented along a singular path (principal strain band 0.015%) at 200 °C. AE monitoring indicated drastically reduced micro-damage energy barriers at 200 °C, where cumulative energy (4000 mV·ms) plummeted to merely 2% of the ambient group (200,000 mV·ms). Infrared thermography showed that energy aggregation shifted from “centralized” (ambient) to “edge-to-center migration” (200 °C), with intensified thermal shock effects in fracture zones (ΔT ≈ −7.2 °C). The study established that hygrothermal coupling weakens the aggregate-paste interfacial transition zone (ITZ) by concentrating the strain energy along singular weak paths and inducing brittle failure mode degeneration, which thereby provides theoretical foundations for fire-resistant design and catastrophic failure warning systems in concrete structures exposed to coupled environmental stressors. Full article
Show Figures

Figure 1

14 pages, 3960 KB  
Article
Experimental Assessment of the Dynamic Hygrothermal and Mechanical Behavior of Compressed Earth Block Walls in a Tropical Humid Climate
by Armel B. Laibi, Philippe Poullain, Nordine Leklou and Moussa Gomina
Buildings 2025, 15(19), 3484; https://doi.org/10.3390/buildings15193484 - 26 Sep 2025
Viewed by 255
Abstract
This study experimentally investigates the mechanical and dynamic hygrothermal behavior of compressed earth block (CEB) walls subjected to simulated climatic cycles representative of a tropical humid environment. Four formulations were tested: raw soil (D0), soil with kenaf fibers (DF), soil with fibers and [...] Read more.
This study experimentally investigates the mechanical and dynamic hygrothermal behavior of compressed earth block (CEB) walls subjected to simulated climatic cycles representative of a tropical humid environment. Four formulations were tested: raw soil (D0), soil with kenaf fibers (DF), soil with fibers and cement (DFC), and soil with fibers, cement, and slag (DFCL). Performance was assessed in an instrumented bi-climatic cell, enabling the determination of thermal and hygroscopic attenuation factors and time lags, complemented by standardized uniaxial compression and three-point bending tests. DFCL achieved a compressive strength of about 10 MPa, nearly twice that of DF (~6 MPa), exceeding the threshold required for buildings up to R + 1. Regarding hygrothermal behavior, DFCL exhibited the highest thermal attenuation factor (2.24) and a hygroscopic attenuation factor of 2.05, with corresponding time lags of ~0.9 h (thermal) and ~1.1 h (hygroscopic). These results highlight superior thermal inertia and moisture regulation, well suited to the constraints of tropical humid climates. Overall, the findings confirm the potential of kenaf fiber-reinforced cement–slag stabilized CEBs as a sustainable construction solution, particularly for load-bearing walls in hot and humid regions. In addition to technical performance, DFCL also offers environmental and economic advantages, as the use of local fibers and slag reduces Portland cement consumption and costs, reinforcing its sustainability potential in tropical contexts. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 6275 KB  
Article
Influence of Bedding Angle on Mechanical Behavior and Grouting Reinforcement in Argillaceous Slate: Insights from Laboratory Tests and Field Experiments
by Xinfa Zeng, Chao Deng, Quan Yin, Yi Chen, Junying Rao, Yi Zhou and Wenqin Yan
Appl. Sci. 2025, 15(19), 10415; https://doi.org/10.3390/app151910415 - 25 Sep 2025
Viewed by 250
Abstract
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering [...] Read more.
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering field. In this study, with bedding dip angle as the key variable, mechanical tests such as uniaxial compression, triaxial compression, direct shear, and Brazilian splitting tests were conducted on AS. Additionally, field anchoring grouting diffusion tests on AS slopes were carried out. The aim is to investigate the basic mechanical properties of AS and the grout diffusion law under different bedding dip angles. The research results indicate that the bedding dip angle has a remarkable influence on the failure mode, stress–strain curve, and mechanical indices such as compressive strength and elastic modulus of AS specimens. The stress–strain curves in uniaxial and triaxial tests, as well as the stress-displacement curve in the Brazilian splitting test, all undergo four stages: crack closure, elastic deformation, crack propagation, and post-peak failure. As the bedding dip angle increases, the uniaxial and triaxial compressive strengths and elastic modulus first decrease and then increase, while the splitting tensile strength continuously decreases. The consistency of the bedding in AS causes the grout to diffuse in a near-circular pattern on the bedding plane centered around the borehole. Among the factors affecting the diffusion range of the grout, the bedding dip angle and grouting angle have a relatively minor impact, while the grouting pressure has a significant impact. A correct understanding and grasp of the anisotropic characteristics of AS and the anchoring grouting diffusion law are of great significance for slope stability assessment and anchoring design in AS areas. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

13 pages, 985 KB  
Article
Experimental Study on the Effect of Drilling Fluid Rheological Properties on the Strength of Brittle Mud Shale
by Wei Wang, Yi Zhang, Fengke Dou, Chengyun Ma, Jianguo Chen, Tongtong Li, Hui Zhang and Wenzhen Yuan
Processes 2025, 13(10), 3059; https://doi.org/10.3390/pr13103059 - 25 Sep 2025
Viewed by 226
Abstract
To investigate the mechanism by which the rheological properties of drilling fluids affect the stability of the wellbore in brittle mud shale, this study systematically examines the influence of drilling fluids with different rheological properties on the hydration dispersion and rock strength of [...] Read more.
To investigate the mechanism by which the rheological properties of drilling fluids affect the stability of the wellbore in brittle mud shale, this study systematically examines the influence of drilling fluids with different rheological properties on the hydration dispersion and rock strength of brittle mud shale through a series of laboratory experiments, including thermal rolling tests and uniaxial compressive strength tests on core samples. The results reveal that for weakly dispersible brittle mud shale, the rheological properties of drilling fluids have a minor effect on hydration dispersion, with rolling recovery rates consistently above 90%. However, the rheological properties of drilling fluids significantly influence the strength of brittle mud shale, and this effect is coupled with multiple factors, including rock fracture intensity index, soaking time, and confining pressure. Specifically, as the viscosity of the drilling fluid increases, the reduction in rock strength decreases; for instance, at 5 MPa confining pressure with an FII of 0.46, the strength reduction after 144 h was 69.8% in distilled water (from an initial 133.2 MPa to 40.2 MPa) compared to 36.3% with 3# drilling fluid (from 133.2 MPa to 88.7 MPa, with 100 mPa·s apparent viscosity). Both increased soaking time and confining pressure exacerbate the reduction in rock strength; a 5 MPa confining pressure, for example, caused an additional 60.9% strength reduction compared to 0 MPa for highly fractured samples (FII = 0.46) in distilled water after 144 h. Rocks with higher fracture intensity indices are more significantly affected by the rheological properties of drilling fluids. Based on the experimental results, this study proposes a strength attenuation model for brittle mud shale that considers the coupled effects of fracture intensity index, soaking time, and drilling fluid rheological properties. Additionally, the mechanism by which drilling fluid rheological properties influence the strength of brittle mud shale is analyzed, providing a theoretical basis for optimizing drilling fluid rheological parameters and enhancing the stability of wellbores in brittle mud shale formations. Full article
Show Figures

Figure 1

17 pages, 3942 KB  
Article
Transparent Elastic Wound Dressing Gel Supporting Drug Release: Synergistic Effects of Poly(Vinyl Alcohol)/Chitosan Hybrid Matrix
by Lifei Chen, Ningning Yuan, Zhenjiang Tan, Jianwei Zhang, Lishi Zhang, Wenwei Tang, Cheng Chen and Donghai Lin
Gels 2025, 11(10), 771; https://doi.org/10.3390/gels11100771 - 25 Sep 2025
Viewed by 298
Abstract
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined [...] Read more.
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined them with Poly(vinyl alcohol)/chitosan (PVA/CS), and dried the mixture into a film to fabricate a silver-loaded hydrogel film dressing with excellent antibacterial properties. Uniaxial tensile tests on the samples revealed that the prepared film dressings exhibited good mechanical properties, preventing fracture caused by external forces. Protein adsorption experiments indicated their favorable protein adsorption performance, which can adsorb microorganisms on the external surface of the dressing. By leveraging the bactericidal mechanism of AgNPs, the dressing achieves efficient antibacterial effects. Additionally, the dressing prepared by this method features good transparency, facilitating routine observation of the wound area without removing the dressing and maintaining a sterile environment for an extended period. Finally, we verified the drug loading and drug release capabilities of the dressing, and found that it has good drug loading capacity and drug release effect. This preliminarily proves its effectiveness and provides more possibilities for subsequent research on composite drugs. This study provides new insights for exploring the clinical application of multifunctional silver-loaded wound dressings. Full article
(This article belongs to the Special Issue Designing Gels for Wound Dressing (2nd Edition))
Show Figures

Figure 1

17 pages, 5183 KB  
Article
Multi-Scale Damage Evolution of Soil-Rock Mixtures Under Freeze–Thaw Cycles: Revealed by Electrochemical Impedance Spectroscopy Testing and Fractal Theory
by Junren Deng, Lei Wang, Guanglin Tian and Hongwei Deng
Fractal Fract. 2025, 9(10), 624; https://doi.org/10.3390/fractalfract9100624 - 25 Sep 2025
Viewed by 694
Abstract
The response of the microscopic structure and macroscopic mechanical parameters of SRM under F–T cycles is a key factor affecting the safety and stability of engineering projects in cold regions. In this study, F–T tests, EIS, and uniaxial compression tests were conducted on [...] Read more.
The response of the microscopic structure and macroscopic mechanical parameters of SRM under F–T cycles is a key factor affecting the safety and stability of engineering projects in cold regions. In this study, F–T tests, EIS, and uniaxial compression tests were conducted on SRM. The construct equivalent model of different conductive paths based on EIS was constructed. A peak strength prediction model was developed using characteristic parameters derived from the equivalent models, thereby revealing the mechanism by which F–T cycles influenced both microscopic structure and macroscopic strength. The results showed that with increasing cycles, both RCP and RCPP  exhibited an exponential decreasing trend, whereas CDSRP and Df increased exponentially. Peak strength and peak secant modulus decreased exponentially, but peak strain increased exponentially. The expansion and interconnection of pores with different radii within CPP and CP caused smaller pores to evolve into larger ones while generating new pores, which led to a decline in RCPP and RCP. Moreover, this expansion enlarged the soil–rock contact area by connecting adjacent gas-phase pores and promoted the transformation of CSRPP into DSRPP, enhancing the parallel-plate capacitance effect and resulting in an increase in CDSRP. Moreover, the interconnection increased the roughness of soil–soil and soil–rock contact surfaces, leading to a rising trend in Df. The combined influence of CDSRP and Df yielded a strength prediction model with higher correlation than a single factor, providing more accurate predictions of UCS. However, the increases in CDSRP and Df induced by F–T cycles also contributed to microscopic structure damage and strength deterioration, reducing the load-bearing capacity and ultimately causing a decline in UCS. Full article
(This article belongs to the Special Issue Applications of Fractal Analysis in Structural Geology)
Show Figures

Figure 1

Back to TopTop