Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = unstructured road recognition in forest region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6523 KB  
Article
Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information
by Guannan Lei, Peng Guan, Yili Zheng, Jinjie Zhou and Xingquan Shen
Forests 2024, 15(9), 1559; https://doi.org/10.3390/f15091559 - 4 Sep 2024
Cited by 3 | Viewed by 1369
Abstract
Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing [...] Read more.
Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation. Full article
(This article belongs to the Special Issue Modeling of Vehicle Mobility in Forests and Rugged Terrain)
Show Figures

Figure 1

Back to TopTop