Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = urban linear heat (UHIULI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 19566 KB  
Article
Estimating Urban Linear Heat (UHIULI) Effect Along Road Typologies Using Spatial Analysis and GAM Approach
by Elahe Mirabi, Michael Chang, Georgy Sofronov and Peter Davies
Atmosphere 2025, 16(7), 864; https://doi.org/10.3390/atmos16070864 - 15 Jul 2025
Viewed by 357
Abstract
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines [...] Read more.
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines the relationship between canopy cover percentage, normalized difference vegetation index, land use types, and three road typologies (local, regional, and state) with land surface temperature. This study is based on data from the city of Adelaide, Australia, using spatial analysis, and statistical modelling. The results reveal strong negative correlations between land surface temperature and both canopy cover percentage and normalized difference vegetation index. Additionally, land surface temperature tends to increase with road width. Among land use types, land surface temperature varies from highest to lowest in the order of parkland, industrial, residential, educational, medical, and commercial areas. Notably, the combined influence of the road typology and land use produces varying effects on land surface temperature. Canopy cover percentage and normalized difference vegetation index consistently serve as dominant cooling factors. The results highlight a complex interplay between built and natural environments, emphasizing the need for multi-factor analyses and a framework based on the local climate and the type of roads (local, regional, and state) to effectively evaluate UHIULI mitigation approaches. Full article
Show Figures

Figure 1

Back to TopTop