Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = urease inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 296 KB  
Review
Technological Innovations in Pasture Fertilization in Brazil—Pathways to Sustainability and High Productivity
by Wagner Sousa Alves, Albert José dos Anjos, Danielle Nascimento Coutinho, Paulo Fortes Neto, Tamara Chagas da Silveira and Karina Guimarães Ribeiro
Grasses 2025, 4(4), 43; https://doi.org/10.3390/grasses4040043 - 25 Oct 2025
Viewed by 463
Abstract
Although pastures cover nearly half of Brazil’s agricultural land and form the backbone of national livestock production, they have historically received limited attention regarding management and fertilization, resulting in widespread degradation. Sustainable intensification of these pasture-based systems is therefore essential to meet growing [...] Read more.
Although pastures cover nearly half of Brazil’s agricultural land and form the backbone of national livestock production, they have historically received limited attention regarding management and fertilization, resulting in widespread degradation. Sustainable intensification of these pasture-based systems is therefore essential to meet growing global demand for animal products while minimizing environmental impacts. This review highlights recent technological innovations in pasture fertilization in Brazil, with a particular focus on alternative phosphorus sources such as natural reactive phosphates, which offer slow-release nutrients at lower costs compared to conventional fertilizers. Efforts to enhance nitrogen use efficiency through nitrification and urease inhibitors show promise in reducing nutrient losses and greenhouse gas emissions, despite current cost constraints limiting adoption. The integration of grass-legume intercropping, especially with Arachis pintoi, has been shown to enhance forage quality and system persistence when appropriately managed. Moreover, plant growth-promoting microorganisms emerge as sustainable biotechnological tools for restoring degraded pastures and boosting forage productivity without adverse environmental consequences. Properly treated agro-industrial residues also present a viable nutrient source for pastures, provided environmental regulations are strictly followed to prevent pollution. Together, these innovations offer a comprehensive framework for enhancing the productivity and sustainability of Brazilian livestock systems, highlighting the pressing need for continued research and the adoption of advanced fertilization strategies. Full article
22 pages, 1064 KB  
Article
Integration of Biostimulants Alongside Various Advanced Nitrogen Fertilization Practices Improve the Yield, Quality, and Sustainability of Malting Barley in Mediterranean Conditions
by Loukas Orfeas Loukakis, Kyriakos D. Giannoulis, Eleftheria Garoufali, Theoni Karaviti, Kyriaki Sotirakoglou, Vasileios Kotoulas, Panagiota Papastylianou and Garyfalia Economou
Agronomy 2025, 15(10), 2417; https://doi.org/10.3390/agronomy15102417 - 18 Oct 2025
Viewed by 447
Abstract
Barley (Hordeum vulgare L.) is a key cereal crop for malting and brewing, where grain plumpness and optimal grain protein concentration (GPC) are essential quality traits. This study investigated the combined effects of nitrogen fertilization strategies and a seaweed-based biostimulant (Ascophyllum [...] Read more.
Barley (Hordeum vulgare L.) is a key cereal crop for malting and brewing, where grain plumpness and optimal grain protein concentration (GPC) are essential quality traits. This study investigated the combined effects of nitrogen fertilization strategies and a seaweed-based biostimulant (Ascophyllum nodosum extract) on malting barley production across four environments in Thessaly, Greece, over two growing seasons. Treatments included urea (U), urea with biostimulant (U + B), urea with urease inhibitor (UI), urea with urease inhibitor and biostimulant (UI + B), and a control (no fertilization). Applications were tested on genotype G20 at mid-development (Z30–33) and genotype G45 at an earlier stage (Z24–30). UI + B treatment consistently enhanced yield by up to 71%, thousand-grain weight by 27%, and spikelets per square meter by 75% relative to the control, with responses influenced by genotype and environment. Grain fractions > 2.8 mm increased by up to 22% under UI + B, while GPC remained within the optimal malting range (9.5–11.5%). Early-stage applications produced strong benefits overall. Principal component analysis distinguished treatment effects, with UI + B samples clustering consistently apart from controls. These results demonstrate that combining biostimulants with urease inhibitors can simultaneously improve yield, quality, and sustainability in malting barley, supporting reduced nitrogen input in Mediterranean systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

28 pages, 4827 KB  
Article
Therapeutic Insights into Rubus ulmifolius Schott Leaf Extract: In Vitro Antifungal, Enzyme Inhibition, and Anticancer Activities Integrated with Network Pharmacology and Molecular Docking Analyses of Colorectal and Ovarian Cancer
by Amina Bramki, Ghozlane Barboucha, Ouided Benslama, Fatiha Seglab, Fatima Zohra Makhlouf, Sirine Nessah, Chawki Bensouici, Marco Masi and Abdullah A. Shaito
Pharmaceuticals 2025, 18(10), 1563; https://doi.org/10.3390/ph18101563 - 16 Oct 2025
Viewed by 709
Abstract
Background/Objectives: This study evaluated the antifungal, enzyme inhibitory, and anticancer properties of the ethyl acetate (EtOAc) leaves extract of Rubus ulmifolius Schott using in vitro assays and in silico analysis. Methods: Antifungal activity was assessed against five fungal strains by measuring inhibition zones. [...] Read more.
Background/Objectives: This study evaluated the antifungal, enzyme inhibitory, and anticancer properties of the ethyl acetate (EtOAc) leaves extract of Rubus ulmifolius Schott using in vitro assays and in silico analysis. Methods: Antifungal activity was assessed against five fungal strains by measuring inhibition zones. Enzyme inhibition assays were conducted for acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and urease. Antiproliferative effects were tested against HT-29 colorectal, SK-OV-3 ovarian, and A549 lung cancer cells using the MTT assay. Network pharmacology and molecular docking analyses were performed on major compounds previously identified by GC–MS (gallic acid, caffeic acid, catechin, and fructofuranose) to uncover the potential mechanisms of the plant in colorectal and ovarian cancers. Results: The extract displayed notable antifungal activity, particularly against Penicillium sp., Aspergillus fumigatus, and Candida albicans, with inhibition zones of 22.5 ± 0.7 to 26.8 ± 1.3 mm. Enzyme assays revealed moderate inhibition of AChE (IC50 = 92.94 ± 1.97 µg/mL), weaker activity against BChE (IC50 = 274.93 ± 2.32 µg/mL), and modest inhibition of urease (IC50 = 262.60 ± 1.41 µg/mL). The extract exhibited strong antiproliferative effects against HT-29 and SK-OV-3 cells (IC50 = 2.41 ± 0.13 and 4.63 ± 0.26 µg/mL, respectively), whereas activity against A549 lung cancer cells was limited. Network pharmacology predicted 52 and 44 overlapping target genes between the major compounds and colorectal and ovarian cancers, respectively. Protein–protein interaction networks identified hub genes for each cancer type, with key shared targets including EGFR, ESR1, PTGS2, and STAT3. Molecular docking confirmed favorable binding between these targets and the compounds, particularly catechin, which showed interactions comparable to those of reference inhibitors. Conclusions: These findings suggest that R. ulmifolius may possess multi-target antifungal, neuroprotective, and anticancer potential, warranting further in vitro pharmacological and preclinical validation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

23 pages, 3474 KB  
Article
Remote Sensing Meets Agronomy: A Three-Year Field Study of Tritordeum’s Response to Enhanced Efficiency Fertilisers
by George Papadopoulos, Ioannis Zafeiriou, Evgenia Georgiou, Antonia Oikonomou, Antonios Mavroeidis, Panteleimon Stavropoulos, Ioanna Kakabouki, Spyros Fountas and Dimitrios Bilalis
Agronomy 2025, 15(9), 2244; https://doi.org/10.3390/agronomy15092244 - 22 Sep 2025
Cited by 1 | Viewed by 784
Abstract
This three-year field study evaluated the agronomic and physiological responses of Tritordeum to nitrogen fertilisation strategies under Mediterranean conditions using an integrated approach combining GDD-aligned phenological monitoring, UAV-based multispectral imaging, and soil analysis. Treatments included conventional urea, urea with a nitrification inhibitor (U+NI; [...] Read more.
This three-year field study evaluated the agronomic and physiological responses of Tritordeum to nitrogen fertilisation strategies under Mediterranean conditions using an integrated approach combining GDD-aligned phenological monitoring, UAV-based multispectral imaging, and soil analysis. Treatments included conventional urea, urea with a nitrification inhibitor (U+NI; DMPP-based), and urea with a urease inhibitor (U+UI; NBPT-based), compared to an unfertilised control. All nitrogen treatments significantly increased grain yield, reaching up to 2319 kg ha−1 under the nitrification inhibitor treatment (26% higher than the control), and protein content, which peaked at 16.04% under urea. Temporal analysis revealed that urea with nitrification inhibitors consistently enhanced plant height, canopy greenness, and pigment retention during flowering to ripening stages, with NDVI and MCARI peaking under U+NI in 2025. In contrast, urea with urease inhibitor promoted greater early-season biomass and height. Soil nitrogen retention was slightly improved under both EEF treatments, with no adverse effects on pH or salinity. The strong alignment between UAV-derived indices and agronomic traits supports their use for monitoring nitrogen response. These findings demonstrate the benefits of a stage-specific fertilisation strategy, deploying urea with nitrification inhibitor early and urea with urease inhibitor during peak vegetative growth, to improve nitrogen synchrony with crop demand and support sustainable crop management in Tritordeum. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

33 pages, 8400 KB  
Article
Biochar and Nitrogen Fertilizer Synergies: Enhancing Soil Properties and Jujube Fruit Quality in Saline–Alkali Orchards of Southern Xinjiang
by Haoyang Liu, Yunqi Ma, Yuxuan Wei, Cuiyun Wu and Yuyang Zhang
Agronomy 2025, 15(9), 2205; https://doi.org/10.3390/agronomy15092205 - 17 Sep 2025
Viewed by 713
Abstract
Saline–alkali soils in southern Xinjiang present significant challenges for sustainable jujube cultivation, necessitating innovative fertilization strategies to improve soil health and enhance fruit quality. This study investigated the synergistic effects of biochar–nitrogen (N) co-application on soil amelioration and the improvement of jujube quality [...] Read more.
Saline–alkali soils in southern Xinjiang present significant challenges for sustainable jujube cultivation, necessitating innovative fertilization strategies to improve soil health and enhance fruit quality. This study investigated the synergistic effects of biochar–nitrogen (N) co-application on soil amelioration and the improvement of jujube quality in saline–alkali jujube orchards. A field experiment was conducted using different biochar application rates (0, BC1, BC2) combined with various N fertilizer types (conventional nitrogen N1, N2, UI-N (urease inhibitor), and NI-N (nitrification inhibitor)), which systematically analyzed soil physicochemical properties, nutrient dynamics, enzyme activities, microbial community structure, and jujube fruit yield and quality parameters. The BC1 biochar application rate emerged as the optimal threshold for soil carbon and N sequestration, with BC1 + N2 treatment achieving the highest total carbon and total nitrogen concentrations, representing increases of 12.4% and 21.42%, respectively, compared to controls. Biochar–N co-application significantly enhanced soil available nutrients, with BC1 + UI-N treatment producing the greatest soil organic matter increase within the BC1 group (9.20–14.51% enhancement). Notably, the treatments modulated soil microelement profiles, suppressing potentially toxic Cu and Mn while enhancing the availability of beneficial Mg and Fe. Soil enzyme activities responded differently, with urease and sucrase activities reaching maximum levels under BC2 + N1 and BC1 + UI-N treatments, respectively. Microbial community analysis revealed that biochar–N combinations significantly restructured both bacterial and fungal communities, with BC1 + NI-N treatment demonstrating superior bacterial α-diversity across all indices. Soil enzyme activities exhibited distinct response patterns, with urease and sucrase activities reaching their peak under the BC2 + N1 and BC1 + UI-N treatments, respectively. Moreover, the co-application of biochar (BC1) with N fertilizer significantly improved fruit performance, increasing per-tree yield by 24.23% and fruit vitamin C content by 16.47%, compared to the control. This study demonstrates that moderate biochar application (BC1) combined with urease inhibitor- enhanced N fertilizer (UI-N) represents an optimal fertilization strategy for saline–alkali jujube orchards, achieving simultaneous soil amelioration and fruit quality enhancement through coordinated regulation of soil–microbe–plant interactions. The established quantitative relationships provide a scientific foundation for the implementation of precision agriculture in arid saline–alkali regions, offering significant implications for sustainable specialty fruit production and soil health restoration in environmentally challenged agricultural systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 4402 KB  
Article
Interactive Effects of Different Field Capacity and Nitrogen Levels on Soil Fertility and Microbial Community Structure in the Root Zone of Jujube (Ziziphus jujuba Mill.) Seedlings in an Arid Region of Southern Xinjiang, China
by Yunqi Ma, Haoyang Liu, Junpan Sun, Cuiyun Wu and Yuyang Zhang
Agronomy 2025, 15(9), 2191; https://doi.org/10.3390/agronomy15092191 - 14 Sep 2025
Viewed by 583
Abstract
Understanding the regulatory mechanisms of water–nitrogen coupling effects on soil–plant–microbe systems in arid regions is crucial for sustainable agricultural development. This study systematically investigated the interactive effects of field capacity (75% vs. 45%) and nitrogen application rates (100 vs. 300 kg ha−1 [...] Read more.
Understanding the regulatory mechanisms of water–nitrogen coupling effects on soil–plant–microbe systems in arid regions is crucial for sustainable agricultural development. This study systematically investigated the interactive effects of field capacity (75% vs. 45%) and nitrogen application rates (100 vs. 300 kg ha−1) combined with different enhanced-efficiency nitrogen fertilizers (EENFs) on rhizosphere soil fertility and microbial community structure of Jujube (Ziziphus jujuba Mill.) seedlings through a two-year pot experiment. Two-year-old jujube seedlings were employed with five treatments: NS (urea), NM (urease inhibitor), XH (nitrification inhibitor), W (microbial fertilizer), and CK (control), to analyze soil physicochemical properties and microbial community responses. Soil available N accumulated under high-N/adequate moisture but declined under drought. NM curbed NH3 volatilization by 32.38–43.22%, while XH increased NH4+-N by 35.76%. Drought raised microbial α-diversity (bacteria + 33.88–37.5%, fungi + 43.62–68.75%). NM demonstrated optimal performance in ammonia volatilization (32.38–43.22% reduction), while XH showed notable efficacy in ammonium-N regulation (35.76% enhancement). Microbial α-diversity exhibited enhanced responses under drought stress, with bacterial and fungal community improvements reaching 33.88–37.5% and 43.62–68.75%. Redundancy analysis showed environmental factors explained more community variance under water stress (bacteria: 79.19→88.76%; fungi: 64.64→92.52%). These findings provide theoretical support for jujube cultivation in arid zones, demonstrate the potential of targeted EENFs, and offer new insights for precision water–fertilizer and microbial management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 1323 KB  
Article
The Effect of Nitrogen Fertilizer Placement and Timing on Winter Wheat Grain Yield and Protein Concentration
by Brent Ballagh, Anna Ballagh, Jacob Bushong and Daryl Brian Arnall
Agronomy 2025, 15(8), 1890; https://doi.org/10.3390/agronomy15081890 - 5 Aug 2025
Cited by 1 | Viewed by 1281
Abstract
Nitrogen (N) fertilizer management in winter wheat production faces challenges from volatilization losses and sub-optimal application strategies. This is particularly problematic in the Southern Great Plains, where environmental conditions during top-dressing periods favor N losses. This study evaluated the effects of a fertilizer [...] Read more.
Nitrogen (N) fertilizer management in winter wheat production faces challenges from volatilization losses and sub-optimal application strategies. This is particularly problematic in the Southern Great Plains, where environmental conditions during top-dressing periods favor N losses. This study evaluated the effects of a fertilizer placement method, enhanced-efficiency fertilizers, and application timing on grain yield and protein concentration (GPC) across six site-years in Oklahoma (2016–2018). Treatments included broadcast applications of untreated urea and SuperU® (urease/nitrification inhibitor-treated urea). These were compared with subsurface placement using single-disc and double-disc drilling systems, applied at 67 kg N ha−1 during January, February, or March. Subsurface placement increased the grain yield by 324–391 kg ha−1 compared to broadcast applications at sites with favorable soil conditions. However, responses varied significantly across environments. Enhanced-efficiency fertilizers showed limited advantages over untreated urea. Benefits were most pronounced during February applications under conditions favoring volatilization losses. Application timing effects were more consistent for GPC than for the yield. Later applications (February–March) increased GPC by 0.8–1.2% compared to January applications. Treatment efficacy was strongly influenced by soil pH, equipment performance, and post-application environmental conditions. This indicates that N management benefits are highly site-specific. These findings demonstrate that subsurface placement can improve nitrogen use efficiency (NUE) under appropriate conditions. However, success depends on matching application strategies to local soil and environmental factors rather than adopting universal recommendations. Full article
(This article belongs to the Special Issue Fertility Management for Higher Crop Productivity)
Show Figures

Figure 1

14 pages, 629 KB  
Article
In Vitro Evaluation of Enhanced Efficiency Nitrogen Fertilizers Using Two Different Soils
by Samuel Okai, Xinhua Yin, Lori Allison Duncan, Daniel Yoder, Debasish Saha, Forbes Walker, Sydney Logwood, Jones Akuaku and Nutifafa Adotey
Soil Syst. 2025, 9(3), 80; https://doi.org/10.3390/soilsystems9030080 - 16 Jul 2025
Viewed by 865
Abstract
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have [...] Read more.
There are discrepancies regarding the effectiveness of enhanced efficiency nitrogen (N) fertilizer (EENF) products on ammonia loss from unincorporated, surface applications of urea-based fertilizers. Soil properties and management practices may account for the differences in the performance of EENF. However, few studies have investigated the performance of urea- and urea ammonium nitrate (UAN)-based EENF on soils with contrasting properties. Controlled-environment incubation experiments were conducted on two soils with different properties to evaluate the efficacy of urea and UAN forms of EENF to minimize ammonia volatilization losses. The experiments were set up as a completely randomized design, with seven treatments replicated four times for 16 days. The N treatments, which were surface-applied at 134 kg N ha−1, included untreated urea, untreated UAN, urea+ANVOLTM (urease inhibitor product), UAN+ANVOLTM, environmentally smart nitrogen (ESN®), SUPERU® (urease and nitrification inhibitor product), and urea+Excelis® (urease and nitrification inhibitor product). In this study, urea was more susceptible to ammonia loss (24.12 and 26.49% of applied N) than UAN (5.24 and 16.17% of applied N), with lower ammonia volatility from soil with a pH of 5.8 when compared to 7.0. Urea-based EENF products performed better in soil with a pH of 5.8 compared to the soil with pH 7.0, except for ESN, which was not influenced by pH. In contrast, the UAN-based EENF was more effective in the high-pH soil (7.0). Across both soils, all EENFs reduced cumulative ammonia loss by 32–91% in urea and 27–70% in UAN, respectively, when compared to their untreated forms. The urea-based EENF formulations containing both nitrification and urease inhibitors were the least effective among the EENF types, performing particularly poorly in high-pH soil (pH 7.0). In conclusion, the efficacy of EENF is dependent on soil pH, N source, and the form of EENF. These findings underscore the importance of tailoring EENF applications to specific soil conditions and N sources to optimize N use efficiency (NUE), enhance economic returns for producers, and minimize environmental impacts. Full article
Show Figures

Figure 1

18 pages, 1437 KB  
Article
Exploration of Microbially Induced Carbonate Precipitation Technology for the Protection of Soil on Agricultural Drainage Ditch Slopes
by Xinran Huang, Jiang Li, Mingxiao Su, Xiyun Jiao, Qiuming Wu and Zhe Gu
Water 2025, 17(13), 2010; https://doi.org/10.3390/w17132010 - 4 Jul 2025
Viewed by 857
Abstract
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), [...] Read more.
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), cementation solution concentrations (1–2 mol/L), and urease inhibitor (NBPT) contents (0–0.3%). Soil experiments further analyzed the effects of solidified layer thickness (4 cm vs. 8 cm) and curing cycles on soil stabilization. The results showed that CaCO3 precipitation peaked at a BCR of 4:5 and declined when NBPT exceeded 0.1%. Optimal parameters (0.1% NBPT, 1 mol/L cementation solution, BCR 4:5) were applied to soil tests, revealing that multi-cycle treatments enhanced soil water retention and CaCO3 content (up to 7.6%) and reduced disintegration rates (by 70%) and permeability (by 83%). A 4 cm solidified layer achieved higher Ca2+ utilization, while an 8 cm layer matched or exceeded 4 cm performance with shorter curing. Calcite crystals dominated CaCO3 formation. Crucially, reagent dosage should approximate four times the target layer’s requirement to ensure efficacy. These findings demonstrate that MICP, when optimized, effectively stabilizes ditch slopes using minimal reagents, providing a sustainable strategy for agricultural soil conservation. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

13 pages, 606 KB  
Article
Inhibition of Urea Hydrolysis in Human Urine for Resource and Energy Recovery: Pharmaceuticals and Their Metabolites as Co-Existing Anticatalyzers
by Haoran Chi, Minshu Chen, Wei Yang, Ya Li, Shuhui Sun, Hualin Wang, Xuejing Yang, Michael R. Hoffmann and Lei Guo
Catalysts 2025, 15(7), 630; https://doi.org/10.3390/catal15070630 - 27 Jun 2025
Viewed by 1801
Abstract
Urine, which has a high concentration of urea, can be used as a sustainable resource for nutrient recovery and sustainable energy. However, urea undergoes hydrolysis, catalyzed by urease, generating ammonia and carbon dioxide. As ammonia is released during hydrolysis in stored urine, the [...] Read more.
Urine, which has a high concentration of urea, can be used as a sustainable resource for nutrient recovery and sustainable energy. However, urea undergoes hydrolysis, catalyzed by urease, generating ammonia and carbon dioxide. As ammonia is released during hydrolysis in stored urine, the pH rises progressively until the pKa of ammonium is reached (i.e., 9.3). At elevated pH levels, struvite and other related precipitates are formed. These reactions lower the efficiency of ammonia and urea nitrogen recovery and often cause scaling, pipe blockage, and odors. Herein, we explore an approach to stabilize urea, using pharmaceuticals and their metabolites that are commonly present in human urine. Based on a survey of the urease inhibitory effects of twenty-three pharmaceuticals and metabolites, we determined that the polyphenolic and disulfide-containing compounds had the highest urease inhibition efficiency. Specifically, outstanding inhibitors include catechol (CAT), hydroquinone (HYD), and disulfiram (DSF). Furthermore, when added to urine, these compounds resulted in the retardation of urease-catalyzed hydrolysis, leading to longer-term urine stabilization upon storage. Reaction mechanisms for urease inhibition by polyphenolics and disulfiram are proposed. Evidence is provided that pharmaceutical metabolites can stabilize urea and thus could lead to a sustainable method for nitrogen nutrient recovery from stored urine. Full article
Show Figures

Figure 1

20 pages, 600 KB  
Review
Challenges and Prospects for Eradication of Helicobacter pylori: Targeting Virulence Factors, Metabolism, and Vaccine Innovation
by Adrian Bakiera, Anita Solarz, Marika Kowalczyk, Halina Cichoż-Lach and Izabela Korona-Głowniak
Pathogens 2025, 14(7), 619; https://doi.org/10.3390/pathogens14070619 - 21 Jun 2025
Cited by 1 | Viewed by 3713
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects almost half of the global population and is linked to gastric conditions like peptic ulcers and gastric cancer, as well as other diseases such as neurological disorders, cardiovascular problems, and iron deficiency anemia. Its survival [...] Read more.
Helicobacter pylori is a Gram-negative bacterium that infects almost half of the global population and is linked to gastric conditions like peptic ulcers and gastric cancer, as well as other diseases such as neurological disorders, cardiovascular problems, and iron deficiency anemia. Its survival in the acidic stomach environment is due to virulence factors like urease, flagella, and adhesion proteins (BabA, SabA). Current treatments involve a combination of antibiotics (clarithromycin, metronidazole, amoxicillin, tetracycline) and proton pump inhibitors, but increasing antibiotic resistance, especially to clarithromycin and metronidazole, poses a major challenge. Resistance mechanisms include mutations in drug targets, efflux pump overexpression, and enzymatic degradation of antibiotics. This has prompted exploration of alternative therapies targeting bacterial processes like urease activity, biofilm formation, and metabolic pathways (energy production, amino acid synthesis, iron acquisition). Natural compounds, such as chitosan and plant extracts, show promise in combating H. pylori growth and virulence. Vaccine development is also ongoing, with DNA vaccines showing potential for broad immune responses. However, no vaccine is yet close to widespread clinical use. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

17 pages, 3018 KB  
Article
Modeling the Combined Effects of Straw Returning, Urease Inhibitors, and Nitrogen Split Application on Rice Yield and Ammonia Volatilization in Purple Soil Area
by Tianxiang Xu, Hong Wang, Huirong Hao, Chaowen Lin and Kelin Hu
Plants 2025, 14(12), 1744; https://doi.org/10.3390/plants14121744 - 6 Jun 2025
Viewed by 802
Abstract
The application of urease inhibitors (UIs) and optimizing nitrogen (N) split application ratio (NSR) can both minimize ammonia (NH3) volatilization and increase rice yield. However, few studies have analyzed the combined effects of these two practices with straw returning on rice [...] Read more.
The application of urease inhibitors (UIs) and optimizing nitrogen (N) split application ratio (NSR) can both minimize ammonia (NH3) volatilization and increase rice yield. However, few studies have analyzed the combined effects of these two practices with straw returning on rice yield and NH3 volatilization. In this study, based on a field experiment involving rice yield, aboveground dry matter (ADM), crop N uptake (Nupt), and NH3 volatilization from 2018 to 2019 in Sichuan Basin, China, the WHCNS (soil water heat carbon nitrogen simulator) model was used to simulate the effects of straw returning, UI, and NSR on rice growth and NH3 volatilization. The results showed that the WHCNS model performed well in simulating rice growth and NH3 volatilization. With straw return amount exceeding 4 t ha−1, rice yield increased slowly or stabilized, while Nupt and NH3 volatilization continued to increase. Increasing the panicle fertilizer (PF) proportion enhanced Nupt during the PF stage, thereby promoting yield improvement. The NSR3 (a 1:1:3 ratio of base fertilizer, tiller fertilizer, and PF) achieved the highest yield, exceeding that of 2:1:2 by 0.29, 0.23, and 0.08 t ha−1 at straw return amounts of 2, 3, and 4 t ha−1, respectively. However, the effects of UI on Nupt and yield enhancement were limited. Furthermore, optimized NSR and the application of UI reduced NH3 volatilization during the basal or tiller fertilizer stages, leading to an average decrease of 5.5% and 8.5% in total NH3 volatilization, respectively. Meanwhile, the increase in straw return amount reduced the NH3 volatilization reduction effects of both practices. Overall, the combination of NSR3 and UI with the straw return amount of 3 t ha−1 was the optimal practice for balancing food security and environmental benefits in purple soil area. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

12 pages, 1706 KB  
Article
Effect of Biological Denitrification Inhibitor on N2O Emissions from Paddy Soil and Microbial Mechanisms
by Longfei Wang, Kaikuo Wu, Furong Xiao, Ping Gong, Yan Xue, Yuchao Song, Ruizhuo Wang, Zhijie Wu and Lili Zhang
Microorganisms 2025, 13(6), 1232; https://doi.org/10.3390/microorganisms13061232 - 27 May 2025
Cited by 3 | Viewed by 825
Abstract
The denitrification process is the main process of the soil nitrogen (N) cycle in paddy fields, which leads to the production of large amounts of nitrous oxide (N2O) and increases N loss in paddy soil. Plant-derived bio denitrification inhibitor procyanidins are [...] Read more.
The denitrification process is the main process of the soil nitrogen (N) cycle in paddy fields, which leads to the production of large amounts of nitrous oxide (N2O) and increases N loss in paddy soil. Plant-derived bio denitrification inhibitor procyanidins are thought to inhibit soil denitrification, thereby reducing N2O emissions and soil N loss. However, the denitrification inhibition effect of procyanidins in paddy soils with high organic matter content remains unclear, and their high price is not conducive to practical application. Therefore, this study conducted a 21-day incubation experiment using low-cost proanthocyanidins (containing procyanidins) and paddy soil with high organic matter content in Northeast China to explore the effects of proanthocyanidins on N2O emissions and related microorganisms in paddy soil. The results of the incubation experiment showed that the application of proanthocyanidins in paddy soil in Northeast China could promote the production of N2O in the first three days but inhibited the production of N2O thereafter. Throughout the incubation period, proanthocyanidins inhibited the enzyme nitrate reductase (NaR) activity and the abundance of nirS and nirk denitrifying bacteria, with a significant dose-response relationship. Although the application of proanthocyanidins also reduced the soil nitrate nitrogen (NO3-N) content, the soil NO3-N content increased significantly with increasing incubation time. In addition, the application of proanthocyanidins increased soil microbial respiration, ammonia-oxidizing archaea (AOA) amoA gene abundance, and soil ammonium nitrogen (NH4+-N) content. Therefore, the application of proanthocyanidins to paddy soil in Northeast China can effectively regulate denitrification. However, in future studies, it is necessary to explore the impact of proanthocyanidins on the nitrification process and use them in combination with urease inhibitors and/or nitrification inhibitors to better regulate soil N transformation and reduce N2O emissions in paddy soil. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 1768 KB  
Article
Unlocking Nitrogen Use Efficiency in Tritordeum: A Holistic Evaluation of Enhanced-Efficiency Fertilisers Under Mediterranean Conditions
by George Papadopoulos, Ioannis Zafeiriou, Evgenia Georgiou, Sotirios Papanikolaou, Antonios Mavroeidis, Panteleimon Stavropoulos, Ioannis Roussis, Ioanna Kakabouki and Dimitrios Bilalis
Sustainability 2025, 17(11), 4919; https://doi.org/10.3390/su17114919 - 27 May 2025
Viewed by 613
Abstract
Improving nitrogen use efficiency (NUE) is critical to advancing sustainable cereal production, particularly under Mediterranean conditions where environmental pressures challenge input-intensive practises. This study evaluates NUE in Tritordeum, a climate-resilient wheat–barley hybrid, using a holistic experimental approach that integrates pre- and post-harvest soil [...] Read more.
Improving nitrogen use efficiency (NUE) is critical to advancing sustainable cereal production, particularly under Mediterranean conditions where environmental pressures challenge input-intensive practises. This study evaluates NUE in Tritordeum, a climate-resilient wheat–barley hybrid, using a holistic experimental approach that integrates pre- and post-harvest soil analyses, including an electrical conductivity (EC) assessment, plant and seed nutrient profiling, and an evaluation of yield performance and nitrogen ratio dynamics. Four treatments were tested: conventional urea (T1), urea with an urease inhibitor (NBPT) (T2), urea with a nitrification inhibitor (DCD) (T3), and an unfertilised control (C). While conventional urea achieved the highest yield (1366 kg ha−1), enhanced-efficiency fertilisers (EEFs) improved nutrient synchronisation and seed nutritional quality. Specifically, EEFs increased seed zinc (T2: 34.93 mg/kg), iron (T1: 33.77 mg/kg), and plant potassium (T2: 1.66%; T3: 1.61%) content, and also improved nitrogen remobilisation (elevated Nplant/Nseed ratios). EEFs also influenced soil properties, increasing organic matter (T3: 2.75%) and EC (T3: 290.78 μS/cm). These findings suggest that while EEFs may not always boost yield in the short term, they contribute to long-term soil fertility and nutrient density in grain. This study underscores the importance of synchronising nitrogen availability with Tritordeum’s phenological stages and highlights the crop’s suitability for sustainable, low-input agriculture under climate variability. Full article
Show Figures

Figure 1

16 pages, 3332 KB  
Article
Duality of Biochar and Organic Manure Co-Composting on Soil Heavy Metals and Enzymes Activity
by George F. Antonious
Appl. Sci. 2025, 15(6), 3031; https://doi.org/10.3390/app15063031 - 11 Mar 2025
Cited by 2 | Viewed by 1188
Abstract
Technological procedures for immobilizing agrochemical pollutants and activating soil enzymes that break down contaminants are still lacking due to industry’s ever-increasing number of new products to enhance agricultural production systems. Using animal manure as organic fertilizers in plant production is an affordable way [...] Read more.
Technological procedures for immobilizing agrochemical pollutants and activating soil enzymes that break down contaminants are still lacking due to industry’s ever-increasing number of new products to enhance agricultural production systems. Using animal manure as organic fertilizers in plant production is an affordable way to alleviate the production cost of inorganic fertilizers and improve crop yield and quality at an affordable price to limited-resource farmers. Microorganisms in animal manure secrete various extracellular hydrolyzing enzymes capable of breaking down organic matter and releasing C, N, and P for plant uptake. A field experiment was conducted to investigate the impact of combining biochar with animal manure on the activity of three enzymes involved in the N, C, and P cycles as a promising strategy for promoting soil health. The results have revealed variability among animal manure and biochar amendments in the activities of the three hydrolyzing enzymes. Biochar decreased the activity of urease and invertase in soil, indicating that some analytes in biochar act as enzyme inhibitors. The results also indicate that not all soil amendments promote soil enzymes activity, and this might be due to the various characteristics and composition of each animal manure. Full article
Show Figures

Figure 1

Back to TopTop