Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,758)

Search Parameters:
Keywords = utilization and storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1386 KB  
Article
Coordinated Control Strategy for Active–Reactive Power in High-Proportion Renewable Energy Distribution Networks with the Participation of Grid-Forming Energy Storage
by Yiqun Kang, Zhe Li, Li You, Xuan Cai, Bingyang Feng, Yuxuan Hu and Hongbo Zou
Processes 2025, 13(10), 3271; https://doi.org/10.3390/pr13103271 - 14 Oct 2025
Abstract
The high proportion of renewable energy connected to the grid has resulted in insufficient consumption capacity in distribution networks, while the construction of new-type power distribution systems has imposed higher reliability requirements. With its flexible power synchronization control capabilities, grid-forming energy storage systems [...] Read more.
The high proportion of renewable energy connected to the grid has resulted in insufficient consumption capacity in distribution networks, while the construction of new-type power distribution systems has imposed higher reliability requirements. With its flexible power synchronization control capabilities, grid-forming energy storage systems possess the ability to both promote the consumption of distributed energy resources in new-type distribution networks and enhance their reliability. However, current control methods are still hindered by drawbacks such as high computational complexity and a singular optimization objective. To address this, this paper proposes an optimized strategy for unified active–reactive power coordinated control in high-proportion renewable energy distribution networks with the participation of multiple grid-forming energy storage systems. Firstly, to optimize the parameters of grid-forming energy storage systems more accurately, this paper employs an improved iterative self-organizing data analysis technique algorithm to generate typical scenarios consistent with the scheduling time scale. Quantile regression (QR) and Gaussian mixture model (GMM) clustering are utilized to generate typical scenarios for renewable energy output. Subsequently, considering operational constraints and equipment state constraints, a unified active–reactive power coordinated control model for the distribution network is established. Meanwhile, to ensure the optimality of the results, this paper adopts an improved northern goshawk optimization (NGO) algorithm to solve the model. Finally, the effectiveness and feasibility of the proposed method are validated and illustrated through an improved IEEE-33 bus test system tested on MATLAB 2024B. Through analysis, the proposed method can reduce the average voltage fluctuation by 6.72% and increase the renewable energy accommodation rate by up to 8.64%. Full article
Show Figures

Figure 1

19 pages, 20836 KB  
Article
Design and Flight Experiment of a Motor-Directly-Driven Flapping-Wing Micro Air Vehicle with Extension Springs
by Seungik Choi, Changyong Oh, Taesam Kang and Jungkeun Park
Biomimetics 2025, 10(10), 686; https://doi.org/10.3390/biomimetics10100686 (registering DOI) - 12 Oct 2025
Viewed by 58
Abstract
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES [...] Read more.
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES revealed a resonant frequency of 19.59 Hz for the flapping-wing mechanism, and actual flapping experiments confirmed this to be 20 Hz. Using a six-axis load cell, we demonstrated the ability to generate roll, pitch, and yaw moments for attitude control based on wing flapping variations. All roll, pitch, and yaw moments were linearly proportional to the wing flapping variations. MEMS gyroscopes and accelerometers were used to measure roll, pitch, and yaw angular velocities and the gravity. A complementary filter was applied to these measurements to obtain the roll and pitch angles required for attitude control. A microprocessor, two motor drive circuits, one MEMS gyroscope/accelerometer, and one EEPROM for flight data storage were implemented on a single, ultra-compact electronic control board and mounted on the MDD-FWMAVES. Simple roll and pitch PD controllers were implemented on this electronic control board, and the controlled flight feasibility of the MDD-FWMAVES was explored. Flight tests demonstrated stable hovering for approximately 6 s. While yaw control was not achieved, the onboard feedback control system demonstrated stable roll and pitch control. Therefore, the MDD-FWMAVES holds the potential to be developed into a high-performance flapping-wing micro air vehicle if its flight system and controller are improved. Full article
(This article belongs to the Special Issue Bio-Inspired Flight Systems and Bionic Aerodynamics 2.0)
Show Figures

Graphical abstract

28 pages, 33417 KB  
Article
Self-Synchronized Common-Mode Current Control Strategy for Power Rebalancing in CPS-PWM Modulated Energy-Storage Modular Multilevel Converters
by Biyang Liu, Cheng Jin, Gong Chen, Kangli Liu and Jianfeng Zhao
Electronics 2025, 14(20), 3990; https://doi.org/10.3390/electronics14203990 - 12 Oct 2025
Viewed by 45
Abstract
Capacitor voltage imbalance among submodules in energy storage modular multilevel converters (MMCs) can lead to current distortion, power oscillations, and even system instability. Traditional voltage control strategies, inherited from non-storage MMCs, offer limited regulation capabilities and are insufficient to address the complex balancing [...] Read more.
Capacitor voltage imbalance among submodules in energy storage modular multilevel converters (MMCs) can lead to current distortion, power oscillations, and even system instability. Traditional voltage control strategies, inherited from non-storage MMCs, offer limited regulation capabilities and are insufficient to address the complex balancing requirements across phases, arms, and submodules in distributed Energy-Storage MMCs (ES-MMC). This paper proposes a self-synchronized common-mode current strategy to achieve capacitor voltage rebalancing in Carrier Phase-Shifted PWM (CPS-PWM) modulated ES-MMCs. The proposed method establishes both phase-level and arm-level power rebalancing pathways by utilizing the common-mode current in the upper and lower arms. Specifically, the DC component of the common-mode current is employed to regulate common-mode power between the arms, while the fundamental-frequency component, through its interaction with the fundamental modulation voltage, is used to adjust differential-mode power. By coordinating these two power components within each phase, the method enables effective capacitor voltage rebalancing among submodules in the presence of power imbalance caused by a nonuniform distributed energy storage converter. A comprehensive analysis of differential- and common-mode voltage regulation under CPS-PWM is presented. The corresponding control algorithm is developed to inject adaptive common-mode voltage based on capacitor voltage deviations, thereby inducing self-synchronized balancing currents. Simulation and experimental results verify that the proposed strategy significantly improves power distribution uniformity and reduces capacitor voltage deviations under various load and disturbance conditions. Full article
Show Figures

Figure 1

18 pages, 5708 KB  
Article
Directly Heated Solid Media Thermal Energy Storage System for Heat Supply in Battery Electric Vehicles: A Holistic Evaluation
by Thorsten Ott and Volker Dreißigacker
Energies 2025, 18(20), 5354; https://doi.org/10.3390/en18205354 (registering DOI) - 11 Oct 2025
Viewed by 142
Abstract
Battery electric vehicles (BEVs) play a key role in reducing CO2 emissions and enabling a climate-neutral economy. However, they suffer from reduced range in cold conditions due to electric cabin heating. Electrically heated thermal energy storage (TES) systems can decouple heat generation [...] Read more.
Battery electric vehicles (BEVs) play a key role in reducing CO2 emissions and enabling a climate-neutral economy. However, they suffer from reduced range in cold conditions due to electric cabin heating. Electrically heated thermal energy storage (TES) systems can decouple heat generation from demand, thereby preventing a loss of range. For this purpose, a novel concept based on a directly electrically heated ceramic solid media TES is investigated, aiming to achieve high storage density while enabling both high charging and discharging powers. To assess the feasibility of the proposed TES concept in BEVs, a holistic evaluation of central aspects is conducted, including experimental characterization for material selection, experimental investigations on electrical contacting, and simulations of the electrothermal charging and thermal discharging processes under vehicle-relevant conditions. As a result of the material characterization, a promising material—a silicon carbide-based composite—was identified, which meets the electrothermal requirements under typical household charging conditions and allows reliable operation with silver-metallized electrodes. Design studies with this material show gravimetric energy densities—including thermal insulation demand—exceeding 100 Wh/kg, storage utilization of up to 90%, and fast charging within 25 min, while offering 5 kW at flexible temperature levels for cabin heating during thermal discharging. These results show that the basic prerequisites for such storage systems are met, while further development—particularly in terms of material improvements—remains necessary. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

25 pages, 5342 KB  
Article
Low-Carbon Economic Collaborative Scheduling Strategy for Aluminum Electrolysis Loads with a High Proportion of Renewable Energy Integration
by Jingyu Li, Yuanyu Chen, Guangchen Liu and Ruyue Han
Appl. Sci. 2025, 15(20), 10919; https://doi.org/10.3390/app152010919 - 11 Oct 2025
Viewed by 105
Abstract
In response to the challenges faced by high-energy-consuming enterprises in utilizing renewable energy and implementing low-carbon operations, this paper proposes a multi-objective optimization strategy based on source–storage–load collaborative scheduling. The strategy establishes a refined model of aluminum electrolysis load, thoroughly considering the coupling [...] Read more.
In response to the challenges faced by high-energy-consuming enterprises in utilizing renewable energy and implementing low-carbon operations, this paper proposes a multi-objective optimization strategy based on source–storage–load collaborative scheduling. The strategy establishes a refined model of aluminum electrolysis load, thoroughly considering the coupling relationship between temperature, production output, and power consumption. Additionally, it develops a dynamic coupling model between multi-functional crane loads and aluminum electrolysis production to reveal the influence mechanism of auxiliary equipment on the main production process. Based on this foundation, this paper constructs a multi-objective optimization model that targets the minimization of operating costs, the minimization of carbon emissions, and the maximization of the renewable energy consumption rate. An improved heuristic intelligent optimization algorithm is employed to solve the model. The simulation results demonstrate that, under a renewable energy penetration of 67.8%, the proposed multi-objective optimization strategy achieves a maximum reduction in carbon emissions of 1677.35 t and an increase in renewable energy consumption rate of 12.11%, compared to the conventional single-objective economic optimization approach, while ensuring the stability of aluminum electrolysis production. Furthermore, when the renewable energy penetration is increased to 76.2%, the maximum reduction in carbon emissions reaches 8260.97 t, and the renewable energy consumption rate is improved by 18.86%. Full article
Show Figures

Figure 1

19 pages, 2314 KB  
Article
Utilization-Driven Performance Enhancement in Storage Area Networks
by Guixiang Lyu, Liudong Xing and Zhiguo Zeng
Telecom 2025, 6(4), 77; https://doi.org/10.3390/telecom6040077 (registering DOI) - 11 Oct 2025
Viewed by 121
Abstract
Efficient resource utilization and low response times are critical challenges in storage area network (SAN) systems, especially as data-intensive applications like those driven by the Internet of Things and Artificial Intelligence place increasing demands on reliable, high-performance data storage solutions. Addressing these challenges, [...] Read more.
Efficient resource utilization and low response times are critical challenges in storage area network (SAN) systems, especially as data-intensive applications like those driven by the Internet of Things and Artificial Intelligence place increasing demands on reliable, high-performance data storage solutions. Addressing these challenges, this paper contributes by proposing a proactive, utilization-driven traffic redistribution strategy to achieve balanced load distribution across switches, thereby improving the overall SAN performance and alleviating the risk of overload-incurred cascading failures. The proposed approach incorporates a Jackson Queueing Network-based method to evaluate both utilization and response time of individual switches, as well as the overall system response time. Based on a comprehensive case study of a mesh SAN system, two key parameters—the transition probability adjustment step size and the node selection window size—are analyzed for their impact on the effectiveness of the proposed strategy, revealing several valuable insights into fine-tuning traffic redistribution parameters. Full article
Show Figures

Figure 1

20 pages, 1203 KB  
Review
Central Roles of Glucosylceramide in Driving Cancer Pathogenesis
by Xueheng Zhao and Manoj Kumar Pandey
Int. J. Mol. Sci. 2025, 26(20), 9879; https://doi.org/10.3390/ijms26209879 - 10 Oct 2025
Viewed by 314
Abstract
Glucosylceramide (GlcCer), a central glycosphingolipid derived from ceramide, is increasingly recognized as a bioactive lipid that intersects with key metabolic, inflammatory, and oncogenic pathways. While its dysregulation has long been associated with lysosomal storage disorders such as Gaucher disease (GD), growing evidence implicates [...] Read more.
Glucosylceramide (GlcCer), a central glycosphingolipid derived from ceramide, is increasingly recognized as a bioactive lipid that intersects with key metabolic, inflammatory, and oncogenic pathways. While its dysregulation has long been associated with lysosomal storage disorders such as Gaucher disease (GD), growing evidence implicates GlcCer in cancer initiation and progression, particularly within tumor-predisposing conditions. GlcCer modulates membrane microdomains, intracellular trafficking, and cell signaling, counteracting ceramide-induced apoptosis and promoting cellular survival. In cancer, aberrant upregulation of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme responsible for GlcCer synthesis, drives tumor growth, metastasis, and multidrug resistance through activation of pathways such as phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK), canonical Wnt pathway (Wnt/β-catenin), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Specific GlcCer species (e.g., C16:0, C18:0, C24:1) display tissue-dependent functions, adding structural specificity to their oncogenic potential. Moreover, emerging links between GlcCer metabolism and chronic inflammation, oxidative stress, and altered glucose utilization highlight its role as a metabolic node bridging inherited metabolic disorders and malignancy. This review integrates recent advances in GlcCer biology, emphasizing its roles in tumor-predisposing diseases and exploring its potential as a biomarker and therapeutic target in oncology. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 1784 KB  
Article
Influence of Stress on Gas Sorption Behavior and Induced Swelling in Coal: Implications for Sustainable CO2 Geological Storage
by Zhiming Fang, Chenlong Yang and Shaicheng Shen
Sustainability 2025, 17(20), 8990; https://doi.org/10.3390/su17208990 - 10 Oct 2025
Viewed by 119
Abstract
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. [...] Read more.
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. However, this influence remains insufficiently understood, largely due to experimental limitations (e.g., overreliance on powdered coal samples) and conflicting theoretical frameworks in existing studies. To address this gap, this study systematically investigates the effects of two distinct stress constraints—constant confining pressure and constant volume—on CO2 adsorption capacity, adsorption kinetics, and associated swelling deformation of intact anthracite coal cores. An integrated experimental apparatus was custom-designed for this study, combining volumetric sorption measurement with high-resolution strain monitoring via the confining fluid displacement (CFD) method and the confining pressure response (CPR) method. This setup enables the quantification of CO2–coal interactions under precisely controlled stress environments. Key findings reveal that stress conditions exert a regulatory role in shaping CO2–coal behavior: constant confining pressure conditions enhance CO2 adsorption capacity and sustain adsorption kinetics by accommodating matrix swelling, thereby preserving pore accessibility for continuous gas uptake. In contrast, constant volume constraints lead to rapid internal stress buildup, which inhibits further gas adsorption and accelerates the attainment of kinetic saturation. Sorption-induced swelling exhibits clear dependence on both pressure and constraint conditions. Elevated CO2 pressure leads to increased strain, while constant confining pressure facilitates more gradual, sustained expansion. This is particularly evident at higher pressures, where adsorption-induced swelling prevails over mechanical constraints. These results help resolve key discrepancies in the existing literature by clarifying the dual role of stress in modulating both pore accessibility (for gas transport) and mechanical response (for matrix deformation). These insights provide essential guidance for optimizing CO2 injection strategies and improving the long-term performance and sustainability of CO2-ECBM and geological carbon storage projects, ultimately supporting global efforts in carbon emission reduction and sustainable energy resource utilization. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

29 pages, 5471 KB  
Article
Game Theory-Based Bi-Level Capacity Allocation Strategy for Multi-Agent Combined Power Generation Systems
by Zhiding Chen, Yang Huang, Yi Dong and Ziyue Ni
Energies 2025, 18(20), 5338; https://doi.org/10.3390/en18205338 - 10 Oct 2025
Viewed by 146
Abstract
The wind–solar–storage–thermal combined power generation system is one of the key measures for China’s energy structure transition, and rational capacity planning of each generation entity within the system is of critical importance. First, this paper addresses the uncertainty of wind and photovoltaic (PV) [...] Read more.
The wind–solar–storage–thermal combined power generation system is one of the key measures for China’s energy structure transition, and rational capacity planning of each generation entity within the system is of critical importance. First, this paper addresses the uncertainty of wind and photovoltaic (PV) power outputs through scenario-based analysis. Considering the diversity of generation entities and their complex interest demands, a bi-level capacity optimization framework based on game theory is proposed. In the upper-level framework, a game-theoretic method is designed to analyze the multi-agent decision-making process, and the objective function of capacity allocation for multiple entities is established. In the lower-level framework, multi-objective optimization is performed on utility functions and node voltage deviations. The Nash equilibrium of the non-cooperative game and the Shapley value of the cooperative game are solved to study the differences in the capacity allocation, economic benefits, and power supply stability of the combined power generation system under different game modes. The case study results indicate that under the cooperative game mode, when the four generation entities form a coalition, the overall system achieves the highest supply stability, the lowest carbon emissions at 30,195.29 tons, and the highest renewable energy consumption rate at 53.93%. Moreover, both overall and individual economic and environmental performance are superior to those under the non-cooperative game mode. By investigating the capacity configuration and joint operation strategies of the combined generation system, this study effectively enhances the enthusiasm of each generation entity to participate in the energy market; reduces carbon emissions; and promotes the development of a more efficient, environmentally friendly, and economical power generation model. Full article
Show Figures

Figure 1

44 pages, 3067 KB  
Article
Optimization of Green Hydrogen Production via Direct Seawater Electrolysis Powered by Hybrid PV-Wind Energy: Response Surface Methodology
by Sandile Mtolo, Emmanuel Kweinor Tetteh, Nomcebo Happiness Mthombeni, Katleho Moloi and Sudesh Rathilal
Energies 2025, 18(19), 5328; https://doi.org/10.3390/en18195328 - 9 Oct 2025
Viewed by 217
Abstract
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational [...] Read more.
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational factors on the integration of renewable energy for green hydrogen production and its economic viability. Addressing critical gaps in renewable energy integration, the research evaluated the feasibility of direct seawater electrolysis and hybrid renewable systems, alongside their techno-economic viability, to support South Africa’s transition from a coal-dependent energy system. Key variables, including electrolyzer efficiency, wind and PV capacity, and financial parameters, were analyzed to optimize performance metrics such as the Levelized Cost of Hydrogen (LCOH), Net Present Cost (NPC), and annual hydrogen production. At 95% confidence level with regression coefficient (R2 > 0.99) and statistical significance (p < 0.05), optimal conditions of electricity efficiency of 95%, a wind-turbine capacity of 4960 kW, a capital investment of $40,001, operational costs of $40,000 per year, a project lifetime of 29 years, a nominal discount rate of 8.9%, and a generic PV capacity of 29 kW resulted in a predictive LCOH of 0.124$/kg H2 with a yearly production of 355,071 kg. Within the scope of this study, with the goal of minimizing the cost of production, the lowest LCOH observed can be attributed to the architecture of the power ratios (Wind/PV cells) at high energy efficiency (95%) without the cost of desalination of the seawater, energy storage and transportation. Electrolyzer efficiency emerged as the most influential factor, while financial parameters significantly affected the cost-related responses. The findings underscore the technical and economic viability of hybrid renewable-powered seawater electrolysis as a sustainable pathway for South Africa’s transition away from coal-based energy systems. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

30 pages, 2204 KB  
Review
Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective
by Isaac Kwesi Nooni and Thywill Cephas Dzogbewu
Clean Technol. 2025, 7(4), 87; https://doi.org/10.3390/cleantechnol7040087 - 9 Oct 2025
Viewed by 106
Abstract
The hydrogen economy stands at the forefront of the global energy transition, and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping, [...] Read more.
The hydrogen economy stands at the forefront of the global energy transition, and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping, topology optimization, functional integration of cooling channels, and the fabrication of intricate, hierarchical, structured pores with precisely controlled connectivity. These features facilitate efficient heat and mass transfer, thereby improving hydrogen production, storage, and utilization efficiency. Furthermore, AM’s multi-material and functionally graded printing capability holds promise for producing components with tailored properties to mitigate hydrogen embrittlement, significantly extending operational lifespan. Collectively, these advances suggest that AM could lower manufacturing costs for hydrogen-related systems while improving performance and reliability. However, the current literature provides limited evidence on the integrated techno-economic advantages of AM in hydrogen applications, posing a significant barrier to large-scale industrial adoption. At present, the technological readiness level (TRL) of AM-based hydrogen components is estimated to be 4–5, reflecting laboratory-scale progress but underscoring the need for further development, validation and industrial-scale demonstration before commercialization can be realized. Full article
Show Figures

Figure 1

24 pages, 658 KB  
Article
Securing Elliptic Curve Cryptography with Random Permutation of Secret Key
by Fayez Gebali and Alshimaa Magdy
Telecom 2025, 6(4), 75; https://doi.org/10.3390/telecom6040075 - 9 Oct 2025
Viewed by 254
Abstract
Scalar multiplication is the basis of the widespread elliptic curve public key cryptography. Standard scalar multiplication is vulnerable to side-channel attacks that are able to infer the secret bit values by observing the power or delay traces. This work utilizes the arithmetic properties [...] Read more.
Scalar multiplication is the basis of the widespread elliptic curve public key cryptography. Standard scalar multiplication is vulnerable to side-channel attacks that are able to infer the secret bit values by observing the power or delay traces. This work utilizes the arithmetic properties of scalar multiplication to propose two scalar multiplication algorithms to insulate ECC implementations from side-channel attacks. The two proposed designs rely on randomly permuting the ordering and storage locations of the different scalar multiplication values 2iG as well as the corresponding secret key bits ki. Statistical analysis and Python 3.9.13implementations confirm the validity of the two algorithms. Numerical results confirm that both designs produce the same results as the standard right-to-left scalar multiplication algorithm. Welch’s t-test as well as numerical simulations confirm the immunity of our proposed protocols to side-channel attacks. Full article
Show Figures

Figure 1

30 pages, 1769 KB  
Review
Decarbonizing the Cement Industry: Technological, Economic, and Policy Barriers to CO2 Mitigation Adoption
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Clean Technol. 2025, 7(4), 85; https://doi.org/10.3390/cleantechnol7040085 - 9 Oct 2025
Viewed by 478
Abstract
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study [...] Read more.
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study is to systematically map and synthesize existing evidence on technological pathways, policy measures, and economic barriers to four core decarbonization strategies: clinker substitution, energy efficiency, alternative fuels, as well as carbon capture, utilization, and storage (CCUS) in the cement sector, with the goal of identifying practical strategies that can align industry practice with long-term climate goals. A scoping review methodology was adopted, drawing on peer-reviewed journal articles, technical reports, and policy documents to ensure a comprehensive perspective. The results demonstrate that each mitigation pathway is technically feasible but faces substantial real-world constraints. Clinker substitution delivers immediate reduction but is limited by SCM availability/quality, durability qualification, and conservative codes; LC3 is promising where clay logistics allow. Energy-efficiency measures like waste-heat recovery and advanced controls reduce fuel use but face high capital expenditure, downtime, and diminishing returns in modern plants. Alternative fuels can reduce combustion-related emissions but face challenges of supply chains, technical integration challenges, quality, weak waste-management systems, and regulatory acceptance. CCUS, the most considerable long-term potential, addresses process CO2 and enables deep reductions, but remains commercially unviable due to current economics, high costs, limited policy support, lack of large-scale deployment, and access to transport and storage. Cross-cutting economic challenges, regulatory gaps, skill shortages, and social resistance including NIMBYism further slow adoption, particularly in low-income regions. This study concludes that a single pathway is insufficient. An integrated portfolio supported by modernized standards, targeted policy incentives, expanded access to SCMs and waste fuels, scaled CCUS investment, and international collaboration is essential to bridge the gap between climate ambition and industrial implementation. Key recommendations include modernizing cement standards to support higher clinker replacement, providing incentives for energy-efficient upgrades, scaling CCUS through joint investment and carbon pricing and expanding access to biomass and waste-derived fuels. Full article
Show Figures

Figure 1

31 pages, 7893 KB  
Article
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
by Fanzhen Jing, Xinyu Wang, Yuee Zhang and Shaoping Chang
Energies 2025, 18(19), 5305; https://doi.org/10.3390/en18195305 - 8 Oct 2025
Viewed by 226
Abstract
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the [...] Read more.
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships, as well as the uncertainty of the output power of renewable energy units, this paper proposes an improved design for an integrated power system for large cruise ships, combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response, as well as an energy storage power allocation method that considers the characteristics of energy storage devices, is designed. A bi-level power capacity optimization model, grounded in comprehensive scenario planning and aiming to optimize maximum return on equity, is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship, the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs, enhance revenue, and increase the return on equity from 5.15% to 8.66%. Full article
Show Figures

Figure 1

16 pages, 3356 KB  
Article
Multi-Physics Coupling Simulation of H2O–CO2 Co-Electrolysis Using Flat Tubular Solid Oxide Electrolysis Cells
by Chaolong Cheng, Wen Ding, Junfeng Shen, Penghui Liao, Chengrong Yu, Bin Miao, Yexin Zhou, Hui Li, Hongying Zhang and Zheng Zhong
Processes 2025, 13(10), 3192; https://doi.org/10.3390/pr13103192 - 8 Oct 2025
Viewed by 294
Abstract
Solid oxide electrolysis cells (SOECs) have emerged as a promising technology for efficient energy storage and CO2 utilization via H2O–CO2 co-electrolysis. While most previous studies focused on planar or tubular configurations, this work investigated a novel flat, tubular SOEC [...] Read more.
Solid oxide electrolysis cells (SOECs) have emerged as a promising technology for efficient energy storage and CO2 utilization via H2O–CO2 co-electrolysis. While most previous studies focused on planar or tubular configurations, this work investigated a novel flat, tubular SOEC design using a comprehensive 3D multi-physics model developed in COMSOL Multiphysics 5.6. This model integrates charge transfer, gas flow, heat transfer, chemical/electrochemical reactions, and structural mechanics to analyze operational behavior and thermo-mechanical stress under different voltages and pressures. Simulation results indicate that increasing operating voltage leads to significant temperature and current density inhomogeneity. Furthermore, elevated pressure improves electrochemical performance, possibly due to increased reactant concentrations and reduced mass transfer limitations; however, it also increases temperature gradients and the maximum first principal stress. These findings underscore that the design and optimization of flat tubular SOECs in H2O–CO2 co-electrolysis should take the trade-off between performance and durability into consideration. Full article
(This article belongs to the Special Issue Recent Advances in Fuel Cell Technology and Its Application Process)
Show Figures

Figure 1

Back to TopTop