Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,206)

Search Parameters:
Keywords = vaporization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1878 KB  
Article
The Potential of Bilberry and Blackcurrant Juices as a Source of Colorants in Intelligent Pectin Films
by Anna Pakulska, Magdalena Mikus, Magdalena Karwacka and Sabina Galus
Appl. Sci. 2025, 15(19), 10789; https://doi.org/10.3390/app151910789 (registering DOI) - 7 Oct 2025
Abstract
The aim of this study was to develop biodegradable pectin films enriched with anthocyanin-rich fruit juices and evaluate their functional properties. Films were prepared with bilberry and blackcurrant juices, and their color response to pH, mechanical performance, thermal stability, and water vapor permeability [...] Read more.
The aim of this study was to develop biodegradable pectin films enriched with anthocyanin-rich fruit juices and evaluate their functional properties. Films were prepared with bilberry and blackcurrant juices, and their color response to pH, mechanical performance, thermal stability, and water vapor permeability were analyzed. The incorporation of juices significantly affected the films’ color, with ΔE values ranging from 8.41 to 39.24 for blackcurrant and 36.60 to 59.59 for wild bilberry juice, showing clear visual differences. Increasing juice concentration from 5% to 10% enhanced color intensity and opacity, with the highest opacity (12.90 a.u./mm) observed for films containing 2% pectin and 10% bilberry juice. Mechanical testing indicated reduced tensile strength after juice addition, with the lowest elongation (11.90%) noted for films with 2% pectin and 5% blackcurrant juice. The lowest water vapor permeability (7.43·10−11 g/m·s·Pa) was recorded for films with 2% pectin. Thermal analysis revealed greater mass loss in juice-enriched films (40–44.5%) compared to controls (37.6%), reflecting the presence of volatile compounds. pH testing confirmed the films’ indicator function, with red coloration at pH 2 and shifts toward blue-grey (bilberry) or orange-green (blackcurrant) at pH 8. These findings demonstrate that pectin films enriched with dark red fruit juices exhibit promising potential for smart food packaging applications. Full article
(This article belongs to the Special Issue Functional Food: From Discovery to Application)
Show Figures

Figure 1

13 pages, 1889 KB  
Article
Dimension Tailoring of Quasi-2D Perovskite Films Based on Atmosphere Control Toward Enhanced Amplified Spontaneous Emission
by Zijia Wang, Xuexuan Huang, Zixuan Song, Chiyu Guo, Liang Tao, Shibo Wei, Ke Ren, Yuze Wu, Xuejiao Sun and Chenghao Bi
Materials 2025, 18(19), 4628; https://doi.org/10.3390/ma18194628 - 7 Oct 2025
Abstract
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing [...] Read more.
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing to their superior ambient stability and enhanced photon confinement capabilities. However, the mixed-phase distribution within Q2D films constitutes a critical determinant of their optical properties, exhibiting pronounced sensitivity to specific fabrication protocols and processing parameters, including annealing temperature, duration, antisolvent volume, injection timing, and dosing rate. These factors frequently lead to broad phase distribution in Q2D perovskite films, thereby inducing incomplete exciton energy transfer and multiple emission peaks, while simultaneously making the fabrication processes intricate and reducing reproducibility. Here, we report a novel annealing-free and antisolvent-free method for the preparation of Q2D perovskite films fabricated in ambient atmosphere. By constructing a tailored mixed-solvent vapor atmosphere and systematically investigating its regulatory effects on the nucleation and growth processes of film via in situ photoluminescence spectra, we successfully achieved the fabrication of Q2D perovskite films with large n narrow phase distribution characteristics. Due to the reduced content of small n domains, the incomplete energy transfer from small n to large n phases and the carriers’ accumulation in small n can be greatly suppressed, thereby suppressing the trap-assistant nonradiative recombination and Auger recombination. Ultimately, the Q2D perovskite film showed a single emission peak at 519 nm with the narrow full width at half maximum (FWHM) of 21.5 nm and high photoluminescence quantum yield (PLQY) of 83%. And based on the optimized Q2D film, we achieved an amplified spontaneous emission (ASE) with a low threshold of 29 μJ·cm−2, which was approximately 60% lower than the 69 μJ·cm−2 of the control film. Full article
Show Figures

Figure 1

20 pages, 3137 KB  
Article
HX-Linear and Nonlinear Optical Responsiveness of Rationally Designed Heteroleptic d8-Metallo-dithiolene Complexes
by Salahuddin S. Attar, Flavia Artizzu, Luca Pilia, Angela Serpe, Alessia Colombo, Claudia Dragonetti, Francesco Fagnani, Dominique Roberto, Daniele Marinotto and Paola Deplano
Molecules 2025, 30(19), 4004; https://doi.org/10.3390/molecules30194004 - 7 Oct 2025
Abstract
This work presents the HX-responsiveness of the following heteroleptic donor–M–acceptor dithiolene complexes: Bu4N[MII(L1)(L2)] [M = Ni(1), Pd(2), Pt(3)], where L1 is the chiral acceptor ligand [(R)-α-MBAdto = chiral (R)-(+)α-methylbenzyldithio-oxamidate] and L2 is the donor ligand (tdas = [...] Read more.
This work presents the HX-responsiveness of the following heteroleptic donor–M–acceptor dithiolene complexes: Bu4N[MII(L1)(L2)] [M = Ni(1), Pd(2), Pt(3)], where L1 is the chiral acceptor ligand [(R)-α-MBAdto = chiral (R)-(+)α-methylbenzyldithio-oxamidate] and L2 is the donor ligand (tdas = 1,2,5-thiadiazole-3,4-dithiolato). Addition of hydrohalic acids induces a strong bathochromic shift and visible color change, which is fully reversed by ammonia (NH3). Moreover, the sensing capability of 1 was further evaluated by deposition on a cellulose substrate. Exposure to HCl vapors induces an evident color change from purple to green, whereas successive exposure to NH3 vapors fully restores the purple color. Remarkably, cellulose films of 1 were revealed to be excellent optical sensors against the response to triethylamine, which is a toxic volatile amine. Moreover, the HCl-responsiveness of the nonlinear optical properties of complexes 1, 2, and 3 embedded into a poly(methyl methacrylate) poled matrix was demonstrated. Reversible chemical second harmonic generation (SHG) switching is achieved by exposing the poled films to HCl vapors and then to NH3 vapors. The SHG response ratio HCl–adduct/complex is significant (around 1.5). Remarkably, the coefficients of the susceptibility tensor for the HCl–adduct films are always larger than those of the respective free-complex films. Density Functional Theory (DFT) and time-dependent DFT calculations help in highlighting the structure–properties relationship. Full article
(This article belongs to the Special Issue Functional Coordination Compounds: Design, Synthesis and Applications)
Show Figures

Figure 1

18 pages, 28470 KB  
Article
Structure and Phase Composition of the Products Derived from Vacuum–Thermal Treatment of a Tellurium-Containing Middling
by Alina Nitsenko, Xeniya Linnik, Valeriy Volodin, Sergey Trebukhov, Bulat Sukurov, Farkhad Tuleutay and Tolebi Dzhienalyev
Materials 2025, 18(19), 4620; https://doi.org/10.3390/ma18194620 - 6 Oct 2025
Abstract
In this paper, the results from a study of the products obtained by vacuum–thermal processing of industrial copper telluride in an inert atmosphere at a pressure of 66 Pa and a temperature of 1100 °C are presented. The residue obtained mainly consisted of [...] Read more.
In this paper, the results from a study of the products obtained by vacuum–thermal processing of industrial copper telluride in an inert atmosphere at a pressure of 66 Pa and a temperature of 1100 °C are presented. The residue obtained mainly consisted of the copper(I) oxide phase. The condensate was represented by the phases CuTe2O5, CuO·CuTeO3, TeO2, SiO2, and CuTe2Cl. The vapor phase condensed in four temperature zones, each represented by a different phase composition. A monophase of tellurium oxide was identified in the condensate at temperatures of 150 to 270 °C. The obtained data contribute to expanding scientific knowledge and form the basis for developing a new, environmentally safe method of processing tellurium-containing middling. The creation of new technologies promotes increased efficiency of tellurium recovery and reduces environmental risks. Full article
(This article belongs to the Section Metals and Alloys)
23 pages, 6714 KB  
Article
The Climate–Fire–Carbon Nexus in Tropical Asian Forests: Fire Behavior as a Mediator and Forest Type-Specific Responses
by Sisheng Luo, Zhangwen Su, Shujing Wei, Yingxia Zhong, Yimin Chen, Xuemei Li, Yufei Zhou, Yangpeng Liu and Zepeng Wu
Forests 2025, 16(10), 1544; https://doi.org/10.3390/f16101544 - 6 Oct 2025
Abstract
Forest fires significantly impact the global climate through carbon emissions, yet the multi-scale coupling mechanisms among meteorological factors, fire behavior, and emissions remain uncertain. Focusing on tropical Asia, this study integrated satellite-based fire behavior products, meteorological datasets, and emission factors, and employed machine [...] Read more.
Forest fires significantly impact the global climate through carbon emissions, yet the multi-scale coupling mechanisms among meteorological factors, fire behavior, and emissions remain uncertain. Focusing on tropical Asia, this study integrated satellite-based fire behavior products, meteorological datasets, and emission factors, and employed machine learning together with structural equation modeling (SEM) to explore the mediating role of fire behavior in the meteorological regulation of carbon emissions. The results revealed significant differences among vegetation types in both carbon emission intensity and sensitivity to meteorological drivers. For example, average gas emissions (GEs) and particle emissions (PEs) in mixed forests (MF, 323.68 g/m2/year for GE and 0.73 g/m2/year for PE) were approximately 172% and 151% higher, respectively, than those in evergreen broadleaf forests (EBF, 118.92 g/m2/year for GE and 0.29 g/m2/year for PE), which exhibited the lowest emission intensity. Mixed forests and deciduous broadleaf forests exhibited stronger meteorological regulation effects, whereas evergreen broadleaf forests were comparatively stable. Temperature and vapor pressure deficit emerged as the core drivers of fire behavior and carbon emissions, exerting indirect control through fire behavior. Overall, the findings highlight fire behavior as a critical link between meteorological conditions and carbon emissions, with ecosystem-specific differences determining the responsiveness of carbon emissions to meteorological drivers. These insights provide theoretical support for improving the accuracy of wildfire emission simulations in climate models and for developing vegetation-specific fire management and climate adaptation strategies. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

15 pages, 5237 KB  
Article
Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
by Qian Zhang, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu and Long Li
Energies 2025, 18(19), 5276; https://doi.org/10.3390/en18195276 - 4 Oct 2025
Abstract
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative [...] Read more.
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative conditions (wall temperature 623.15 K, p = 0.708–6.816 MPa) and pyrolytic conditions (wall temperature 793.15 K, p = 2.706–7.165 MPa); carbon deposits were quantified by LECO analysis, oxidation activity was assessed by temperature-programmed oxidation (TPO), and morphology was performed by FESEM and EDS. Results show that oxidative coking is minimal (5.37–14.95 μg·cm2) and largely insensitive to pressure in the liquid phase (1.882–6.816 MPa), whereas at 0.708 MPa (gas/phase-change conditions), deposition increases, implicating phase and local heat-transfer effects. Under oxidative conditions, deposits are predominantly amorphous carbon with a disordered structure, formed at relatively low temperatures, with only a few fiber-like metal sulfides identified by EDS. In contrast, under pyrolysis conditions, the deposits are predominantly carbon nanotubes, exhibiting well-defined tubular morphology formed at elevated temperatures via metal-catalyzed growth. The pyrolysis coking yield is substantially higher (66.88–221.89 μg·cm−2) and increases with pressure. The findings imply that the pressure influences the coking of JP-10 via phase state under oxidative conditions and residence time under pyrolytic conditions, while basic morphologies of coke deposits remain similar; operationally, maintaining the working pressure higher than the saturated vapor pressure can mitigate oxidation coking associated with phase transitions, and minimizing residence time can mitigate pyrolytic coking. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 - 4 Oct 2025
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

18 pages, 2205 KB  
Article
Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics
by Sung-Hun Jo, Donghwan Kim, Chaewon Park and Eun Gyo Jeong
Polymers 2025, 17(19), 2688; https://doi.org/10.3390/polym17192688 - 4 Oct 2025
Abstract
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The [...] Read more.
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The polymer, deposited via initiated chemical vapor deposition (iCVD), offered over 90% optical transmittance, low RMS roughness (1–3 nm), and excellent solvent resistance, providing a stable base for inorganic barrier integration. An ALD Al2O3/ZnO nano-stratified barrier initially delivered effective moisture blocking, but tensile stress accumulation imposed a critical thickness of 30 nm, where the WVTR plateaued at ~2.5 × 10−4 g/m2/day. To overcome this limitation, a 40 nm e-beam SiO2 capping layer was added, introducing compressive stress via atomic peening and stabilizing Al2O3 interfaces through Si–O–Al bonding. This stress-balanced design doubled the critical thickness to 60 nm and reduced the WVTR to 3.75 × 10−5 g/m2/day, representing an order-of-magnitude improvement. OLEDs fabricated on this ultrathin platform preserved J–V–L characteristics and efficiency (~4.5–5.0 cd/A) after water-assisted transfer and on-skin deformation, while maintaining LT80 lifetimes of 140–190 h at 400 cd/m2 and stable emission for over 20 days in ambient storage. These results demonstrate that the stress-balanced encapsulation platform provides a practical route to meet the durability and reliability requirements of next-generation wearable optoelectronic devices. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2105 KB  
Article
Synthesis of CSA-Capped Poly (Aniline-Co-Aniline-2-Sulfonic Acid) Spherical Nanoparticles for Gas Sensor Applications
by Ki-Hyun Pyo, Ji-Sun Kim, Yoon Hee Jang and Jin-Yeol Kim
Chemosensors 2025, 13(10), 364; https://doi.org/10.3390/chemosensors13100364 - 4 Oct 2025
Abstract
We synthesized emeraldine salts of poly(aniline-co-aniline-2-sulfonic acid) capped with camphorsulfonic acid (CSA), forming spherical nanoparticles (NPs), i.e., CSA-capped P(ANi-co-ASNi), and demonstrated their efficacy as gas sensor elements. The synthesized core–shell spherical NPs, averaging 265 nm in diameter, feature a CSA shell with a [...] Read more.
We synthesized emeraldine salts of poly(aniline-co-aniline-2-sulfonic acid) capped with camphorsulfonic acid (CSA), forming spherical nanoparticles (NPs), i.e., CSA-capped P(ANi-co-ASNi), and demonstrated their efficacy as gas sensor elements. The synthesized core–shell spherical NPs, averaging 265 nm in diameter, feature a CSA shell with a porous thin-film morphology, characterized by the uneven distribution of fine particulate domains across the outer surface of the positively charged P(ANi-co-ASNi) cores. This uniquely heterogeneous shell architecture facilitates stable charge transport at the core–shell interface, enhances resistance to ambient humidity, and promotes efficient interaction with organic gas molecules. The CSA-capped P(ANi-co-ASNi) sensors reliably detected low concentrations of acetone (1–5 ppm) and water vapor (1–28% RH) under ambient conditions. Furthermore, the sensors exhibited superior stability across varying temperature, humidity, and cyclic performance, outperforming conventional pure PANiNi. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

17 pages, 2276 KB  
Article
Top-Down Ultrasonication Method for ZnO Nanoparticles Fabrication and Their Application in Developing Pectin-Glycerol Bionanocomposite Films
by Maulida Nur Astriyani, Nugraha Edhi Suyatma, Vallerina Armetha, Eko Hari Purnomo, Tjahja Muhandri, Faleh Setia Budi, Boussad Abbes and Ahmed Tara
Physchem 2025, 5(4), 42; https://doi.org/10.3390/physchem5040042 - 3 Oct 2025
Abstract
Ultrasonication offers a safer, lower-temperature method for synthesizing zinc oxide nanoparticles (ZnO-NPs). This study details the development of a pectin-glycerol bionanocomposite film reinforced with ZnO-NPs produced using the top-down ultrasonication method. ZnO-NPs were fabricated with varying ultrasonication durations (0, 30, and 60 min) [...] Read more.
Ultrasonication offers a safer, lower-temperature method for synthesizing zinc oxide nanoparticles (ZnO-NPs). This study details the development of a pectin-glycerol bionanocomposite film reinforced with ZnO-NPs produced using the top-down ultrasonication method. ZnO-NPs were fabricated with varying ultrasonication durations (0, 30, and 60 min) and the addition of pectin as a capping agent. Extended ultrasonication duration resulted in smaller particle size and more defined morphology. Bionanocomposite films were prepared using the solvent casting method by incorporating ZnO-NPs (0, 0.5, 1, 2.5% w/w) and glycerol (0, 10, 20% w/w) as a plasticizer to a pectin base. The inclusion of ZnO-NPs and glycerol did not affect the shear-thinning behavior of the film-forming solution. FTIR analysis indicated interactions between ZnO-NPs, glycerol, and pectin. The addition of ZnO-NPs and glycerol reduced tensile strength but increased flexibility. ZnO-NPs improved barrier and thermal properties by reducing water vapor permeability and increasing melting point, whereas glycerol lowered glass transition temperature, thus enhancing film flexibility. The best film performance was observed with a combination of 0.5% ZnO and 20% glycerol. These results highlight the effectiveness of the top-down ultrasonication method as a sustainable approach for ZnO-NPs fabrication, supporting the development of pectin/ZnO-NPs/glycerol films as a promising material for eco-friendly packaging. Full article
(This article belongs to the Section Nanoscience)
Show Figures

Graphical abstract

14 pages, 1868 KB  
Article
Characteristic Analysis of Boiling Heat Transfer of R32 Refrigerant and Modeling Study of Heat Exchanger
by Bo Yu, Chenjie Zhou, Wenxiao Chu and Yuye Luo
Energies 2025, 18(19), 5258; https://doi.org/10.3390/en18195258 - 3 Oct 2025
Abstract
This study experimentally investigates the boiling heat transfer characteristics of R32 and R410A refrigerants in heat exchangers, systematically analyzing the effects of tube thickness, saturation temperature, latent heat, liquid-phase density, and viscosity. The average boiling heat transfer coefficients (HTCs) of R32 and R410A [...] Read more.
This study experimentally investigates the boiling heat transfer characteristics of R32 and R410A refrigerants in heat exchangers, systematically analyzing the effects of tube thickness, saturation temperature, latent heat, liquid-phase density, and viscosity. The average boiling heat transfer coefficients (HTCs) of R32 and R410A were compared across varying mass flow rates and saturation temperatures. The results reveal that, independent of tube thickness, the boiling HTC of R32 exhibits a non-monotonic increase followed by a decrease with rising mass flow rate. Additionally, elevated saturation temperatures reduced vaporization latent heat, liquid-phase density, and gas-phase viscosity, while the flow pattern may also change. Meanwhile, R32 demonstrated superior boiling heat transfer performance compared to R410A under equivalent conditions. Furthermore, the correlation is proposed to predict the HTCs, indicating ±10% prediction error. This study provides critical insights for optimizing refrigeration systems and advancing heat exchanger modeling frameworks. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

28 pages, 6856 KB  
Article
Engineering PVA-CNF-MOF Composite Films for Active Packaging: Enhancing Mechanical Strength, Barrier Performance, and Stability for Fresh Produce Preservation
by Sergio Carrasco, Juan Amaro-Gahete, Eduardo Espinosa, Almudena Benítez, Francisco J. Romero-Salguero and Alejandro Rodríguez
Molecules 2025, 30(19), 3971; https://doi.org/10.3390/molecules30193971 - 3 Oct 2025
Abstract
Food waste is a global challenge, with nearly 40% of food discarded annually, leading to economic losses, food insecurity, and environmental harm. Major factors driving spoilage include microbial contamination, enzymatic activity, oxidation, and excessive ethylene production. Active packaging offers a promising solution by [...] Read more.
Food waste is a global challenge, with nearly 40% of food discarded annually, leading to economic losses, food insecurity, and environmental harm. Major factors driving spoilage include microbial contamination, enzymatic activity, oxidation, and excessive ethylene production. Active packaging offers a promising solution by extending shelf life through the selective absorption or release of specific substances. In this study, polyvinyl alcohol (PVA) films incorporating metal-organic frameworks (MOFs) were prepared via solvent casting to enhance their mechanical and barrier properties. Five MOFs (HKUST-1, MIL-88A, BASF-A520, UiO-66, and MOF-801) were embedded in the PVA matrix and analyzed for their physical, mechanical, and optical characteristics. The incorporation of TEMPO-oxidized cellulose nanofibers (CNF) improved MOF dispersion, significantly strengthening film performance. Among the formulations, PVA-CNF-MOF-801 exhibited the best performance, with a 130% increase in tensile strength, a 50% reduction in water vapor permeability, and a 168% improvement in UV protection compared with neat PVA films. Ethylene adsorption tests with climacteric fruits confirmed that CNF-containing films retained ethylene more effectively than those without CNFs, although the differences among the MOFs were minimal. These results highlight the potential of PVA-CNF-MOF composite films as sustainable active packaging materials, providing an effective strategy to reduce food waste and its environmental impact. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass III)
Show Figures

Graphical abstract

13 pages, 7148 KB  
Article
Cutting Performance of TiN/DLC-Coated Cemented Carbide Tool in Dry Cutting of Laser-Clad Cr-Ni-Based Steel
by Zixiang Xia, Wenlong Song, Hongjin Yu, Xing Li, Yijia Yin and Weidong Xie
Coatings 2025, 15(10), 1150; https://doi.org/10.3390/coatings15101150 - 3 Oct 2025
Abstract
To improve the dry-machining performance of a traditional-coated cemented carbide tool when cutting the laser-clad Cr-Ni-based steel, TiN/DLC multilayer coatings were fabricated using physical vapor deposition (PVD). The coated tools were tested for their surface and cross-sectional morphology, roughness, and microhardness. Dry-cutting experiments [...] Read more.
To improve the dry-machining performance of a traditional-coated cemented carbide tool when cutting the laser-clad Cr-Ni-based steel, TiN/DLC multilayer coatings were fabricated using physical vapor deposition (PVD). The coated tools were tested for their surface and cross-sectional morphology, roughness, and microhardness. Dry-cutting experiments were conducted to compare the performance of a TiN monolayer-coated tool and a TiN/DLC multilayer-coated tool. The results indicated that the TiN/DLC multilayer coatings significantly improved the machining performance, lowered the cutting force and cutting temperature, decreased the average friction coefficient at the rake face, and reduced surface roughness compared to the TiN-coated tool. This improvement is mainly attributed to the low shear strength of the DLC layer, which effectively reduces surface friction and wear of the tool. The main failure modes were abrasive wear and adhesive wear. The results suggest that the composite coating offers a promising approach to improving traditional-coated tool life and enhancing machining efficiency in the dry cutting of laser-clad alloy components. Full article
(This article belongs to the Collection Hard Protective Coatings on Tools and Machine Elements)
Show Figures

Figure 1

20 pages, 703 KB  
Article
Fast Trace Detection of Chlorpyrifos Vapors Using a Handheld Ion Mobility Spectrometer Operated near Ambient Temperature
by Victor Bocoș-Bințințan, Ancuța-Maria Dodea, Tomáš Rozsypal, Adrian Pătruț, Gheorghe Roșian, Aurel-Vasile Martiniuc, Alin-Gabriel Moraru, Simina Vasc and Maria-Paula Bocoș-Bințințan
Toxics 2025, 13(10), 843; https://doi.org/10.3390/toxics13100843 - 2 Oct 2025
Abstract
Chlorpyrifos CPF (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), known also as Chlorpyrifos-ethyl, is one of the most utilized organophosphorus pesticides worldwide. Additionally, CPF could be used as a chemical warfare agent surrogate. Although its acute toxicity is not high, it is responsible for both a large [...] Read more.
Chlorpyrifos CPF (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), known also as Chlorpyrifos-ethyl, is one of the most utilized organophosphorus pesticides worldwide. Additionally, CPF could be used as a chemical warfare agent surrogate. Although its acute toxicity is not high, it is responsible for both a large number of intoxications and chronic, delayed neurological effects. In this work, it is reported for the first time the qualitative and quantitative response produced by CPF vapors, using a pocket-held Time-of-Flight Ion Mobility Spectrometer (ToF IMS) with a non-radioactive ionization source and ammonia doping, model LCD-3.2E (Smiths Detection Ltd.), operated near ambient temperature (below 30 °C). Spectra of CPF in positive ion mode included two distinct product ion peaks; thus, identification of CPF vapors by IMS relies on these peaks—the monomer M·NH4+ with reduced ion mobility K0 = ca. 1.76 cm2V−1s−1 and the dimer M2·NH4+ with K0 = ca. 1.47 cm2V−1s−1 (where M may be assignable to CPF molecule)—and positive reactant ions (Pos RIP) have K0 = ca. 2.25 cm2V−1s−1. Excellent sensitivity, with a limit of detection LOD of 0.72 ppbv (10.5 μg m−3) and a limit of quantification LOQ of 2.41 ppbv (35.1 μg m−3), has been noticed; linear response was up to 100 ppbv, while saturation occurs over ca. 1000 ppbv (14.6 mg m−3). Our results demonstrate that this method provides a robust tool for both off-site and on-site detecting and quantifying CPF vapors at trace levels, which has strong implications for either industrial hygiene or forensic investigations concerning the pesticide Chlorpyrifos, as well as for monitoring of environmental contamination by organophosphorus pesticides. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
21 pages, 5507 KB  
Article
Exploring the Effect of the Porogenic Agent on Flat Membranes Based on Polyamide 6 (PA6)/Carbon Nanotubes (MWCNT) Nanocomposites
by Clara Maria Marinho Serafim, Renê Anísio da Paz, Rafael Agra Dias, Vanessa da Nóbrega Medeiros, Pamela Thainara Vieira da Silva, Carlos Bruno Barreto Luna, Renate Maria Ramos Wellen and Edcleide Maria Araújo
Processes 2025, 13(10), 3155; https://doi.org/10.3390/pr13103155 - 2 Oct 2025
Abstract
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per [...] Read more.
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per hundred resin (phr). The membranes were produced using the phase inversion process through the immersion–precipitation technique. In total, eight membrane compositions were developed with solvent/polymer ratios of 80/20 (weight %). Calcium chloride (CaCl2) was used as a pore-forming agent at a content of 10 phr. Thus, the characterizations performed were: solution viscosity, FTIR, contact angle measurement, SEM, AFM, water permeability test, and water vapor permeation test. The results showed that the high viscosity of membranes, excessive gelation time, and higher MWCNT contents contributed to a decrease and/or absence of flow. Through SEM images and water flow measurements, the significant influence of CaCl2 was observed in modifying the membrane morphology (more interconnected porous structures), ensuring the presence of flow. The AFM images also confirm this phenomenon through the increase in roughness. Water vapor transmission increased with higher MWCNT content. These results demonstrate that PA6 and MWCNT membranes were effective for water filtration, only in those where CaCl2 was used, and for water vapor initially. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

Back to TopTop