Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,268)

Search Parameters:
Keywords = vegetation trait

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1727 KiB  
Article
Effects of Climate Change Scenarios on Growth, Flowering Characteristics, and Honey Production Potential of Pseudolysimachion rotundum var. subintegrum
by Kyeong-Cheol Lee, Yeong-Geun Song, Hyun-Jung Koo, Kyung-Jun Kim, Hyung-Joo Kim, Ha-Young Baek and Sung-Joon Na
Plants 2025, 14(11), 1647; https://doi.org/10.3390/plants14111647 - 28 May 2025
Abstract
Climate change significantly influences plants’ physiology, flowering phenology, and nectar production, affecting pollinator interactions and apicultural sustainability. This study examines the physiological responses of Pseudolysimachion rotundum (Nakai) Holub var. subintegrum (Nakai) T. Yamaz. (Plantaginaceae) under projected climate change scenarios, focusing on flowering traits, [...] Read more.
Climate change significantly influences plants’ physiology, flowering phenology, and nectar production, affecting pollinator interactions and apicultural sustainability. This study examines the physiological responses of Pseudolysimachion rotundum (Nakai) Holub var. subintegrum (Nakai) T. Yamaz. (Plantaginaceae) under projected climate change scenarios, focusing on flowering traits, nectar secretion, and honey production potential. Elevated CO2 levels enhanced its net photosynthesis and water-use efficiency, supporting sustained carbohydrate assimilation and promoting aboveground biomass accumulation. However, the increased nitrogen demand for vegetative growth and inflorescence production may have led to reduced allocation of nitrogen to the nectar, contributing to a decline in its amino acid concentrations. The flowering period advanced with rising temperatures, with peak bloom occurring up to four days earlier under the SSP5 conditions. While the nectar secretion per flower remained stable, an increase in floral abundance led to a 3.8-fold rise in the estimated honey production per hectare. The analysis of the nectar’s composition revealed that sucrose hydrolysis intensified under higher temperatures, shifting the nectar toward a hexose-rich profile. Although nectar quality slightly declined due to reductions in sucrose and nitrogen-rich amino acids, phenylalanine—the most preferred amino acid by honeybees—remained dominant across all scenarios. These findings confirm the strong climate resilience of P. rotundum var. subintegrum, highlighting its potential as a sustainable nectar source in future apicultural landscapes. Given the crucial role of nitrogen in both plant growth and nectar composition, future research should explore soil nitrogen dynamics and plant nitrogen metabolism to ensure long-term sustainability in plant–pollinator interactions and apicultural practices. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
13 pages, 1770 KiB  
Article
Zea mays-Derived Protein Hydrolysate and Diverse Application Modes Differentially Compose Crop Production and Fruit Quality of Strawberry Cultivated Under Tunnel
by Fabiana Mancuso, Lorena Vultaggio, Leo Sabatino, Pietro Bellitto, Georgia Ntatsi, Enrica Allevato, Gaetano Giuseppe La Placa, Salvatore La Bella and Beppe Benedetto Consentino
Agronomy 2025, 15(6), 1314; https://doi.org/10.3390/agronomy15061314 - 27 May 2025
Abstract
Agriculture is presently facing several ecological concerns related to the upsurging request for premium-value food produced in compliance with natural horticultural tools. The use of natural substances, such as biostimulants, principally protein hydrolysates (PHs), could be useful to maximize overall vegetable plant fitness. [...] Read more.
Agriculture is presently facing several ecological concerns related to the upsurging request for premium-value food produced in compliance with natural horticultural tools. The use of natural substances, such as biostimulants, principally protein hydrolysates (PHs), could be useful to maximize overall vegetable plant fitness. However, the mode of application (foliar spray or fertigation) could affect biostimulant efficiency. The current research was conducted to evaluate the effect of a Zea mays-derived PH (Surnan®, SPAA, Pescara, Italy) and its mode of application (foliar spray and/or fertigation) on yield traits, mineral profile, nutritional and functional components, along with NUE of “Florida fortuna” strawberry cultivated under tunnel. The findings showed that the corn-based PH effectively enhanced yield and number of marketable fruits per plant (NMFP) compared with the control (+20.1% and +25.4%, respectively). Fruits from biostimulated plants also showed a higher fruit lightness and ascorbic acid and anthocyanin concentration than fruits from control plots. Furthermore, Surnan® PH increased nitrogen use efficiency (NUE) of strawberry plants. Captivatingly, plants biostimulated via fertigation showed the highest fruit potassium (K) concentration, while those exposed to the foliar spray had the highest fruit phenolic concentration. Generally, our findings recommended that the application of Zea mays-derived PH via foliar spray could be considered a suitable tool to increase functional traits of strawberry grown under tunnel. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 4535 KiB  
Article
Population Size and Microhabitat Characteristics of the Endangered Endemic Plant Pedicularis hallaisanensis
by Chang Woo Lee, Hwan-Joon Park, Jung Eun Hwang, Hyeong Bin Park, Young-Joong Kim and Seongjun Kim
Diversity 2025, 17(6), 377; https://doi.org/10.3390/d17060377 - 27 May 2025
Abstract
Pedicularis hallaisanensis is a strictly biennial, hemiparasitic herb endemic to Republic of Korea and listed as an endangered species. Its populations are limited to high-altitude habitats, with recent surveys confirming survival only in Gayasan. This study aimed to assess the population size and [...] Read more.
Pedicularis hallaisanensis is a strictly biennial, hemiparasitic herb endemic to Republic of Korea and listed as an endangered species. Its populations are limited to high-altitude habitats, with recent surveys confirming survival only in Gayasan. This study aimed to assess the population size and ecological traits of P. hallaisanensis to inform conservation strategies. We established 23 quadrats at 1400–1410 m above sea level and collected microhabitat data (air temperature, soil moisture, electroconductivity, vegetation cover, and species richness) from 2022 to 2024. Flora composition and pollinator species were surveyed, with bumblebees (Bombus ignitus, B. hypocrita sapporoensis) identified as the most frequent pollinators. General linear mixed models and Pearson’s correlation analysis showed a strong positive relationship between species richness and population size and between vegetation cover and stem height. The study area’s average temperature was 6.3 °C below Republic of Korea’s national average, suggesting that climate change could disrupt the microclimatic conditions necessary for this species’ survival. The findings highlight the importance of maintaining plant diversity and controlling invasive woody species to sustain P. hallaisanensis populations. Targeted conservation measures, including habitat management and ex situ propagation, are recommended to safeguard this vulnerable species. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

23 pages, 19370 KiB  
Article
Unraveling Phenological Dynamics: Exploring Early Springs, Late Autumns, and Climate Drivers Across Different Vegetation Types in Northeast China
by Jiayu Liu, Haifeng Zou, Yinghui Zhao, Xiaochun Wang and Zhen Zhen
Remote Sens. 2025, 17(11), 1853; https://doi.org/10.3390/rs17111853 - 26 May 2025
Viewed by 120
Abstract
Understanding plant phenology dynamics is essential for ecosystem health monitoring and climate change impact assessment. This study generated 4-day, 500 m land surface phenology (LSP) in Northeast China (NEC) from 2001 to 2021 using interpolated and Savitzky–Golay filtered kernel normalized difference vegetation index [...] Read more.
Understanding plant phenology dynamics is essential for ecosystem health monitoring and climate change impact assessment. This study generated 4-day, 500 m land surface phenology (LSP) in Northeast China (NEC) from 2001 to 2021 using interpolated and Savitzky–Golay filtered kernel normalized difference vegetation index (kNDVI) derived from MODIS. Spatial patterns, trends, and climate responses of phenology were analyzed across ecoregions and vegetation. Marked spatial heterogeneity was noted: forests showed the earliest start of season (SOS, ~125th day) and longest growing season (LOS, ~130 days), while shrublands had the latest SOS (~150th day) and shortest LOS (~96 days). Grasslands exhibited strong east–west gradients in SOS and EOS. From 2001 to 2021, SOS of natural vegetations in NEC advanced by 0.23 d/a, EOS delayed by 0.12 d/a, and LOS extended by 0.38 d/a. Coniferous forests, especially evergreen needle-leaved forests, exhibited opposite trends due to cold-resistant traits and an earlier EOS to avoid leaf cell freezing. Temperature was the main driver of SOS, with spring and winter temperatures influencing 48.8% and 24.2% of the NEC region, respectively. Precipitation mainly affected EOS, especially in grasslands. Drought strongly influences SOS, while precipitation affects EOS. This study integrates high-resolution phenology utilizing the kNDVI with various seasonal climate drivers, offering novel insights into vegetation-specific and ecoregion-based phenological dynamics in the context of climate change. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

19 pages, 2962 KiB  
Article
Genome-Wide Association Study Reveals Candidate Genes Regulating Plant Height and First-Branch Height in Brassica napus
by Tianyu Cui, Xinao Wang, Wenxiang Wang, Hongtao Cheng, Desheng Mei, Qiong Hu, Wenliang Wei and Jia Liu
Int. J. Mol. Sci. 2025, 26(11), 5090; https://doi.org/10.3390/ijms26115090 - 26 May 2025
Viewed by 72
Abstract
Rapeseed (Brassica napus L., 2n = 38) is an important oil crop worldwide, providing vegetable oil and biofuel. Despite improvements in breeding, rapeseed’s harvest index and yield remain lower than other major crops. Plant height (PH) and first-branch height (FBH) are [...] Read more.
Rapeseed (Brassica napus L., 2n = 38) is an important oil crop worldwide, providing vegetable oil and biofuel. Despite improvements in breeding, rapeseed’s harvest index and yield remain lower than other major crops. Plant height (PH) and first-branch height (FBH) are crucial plant architecture traits affecting yield, lodging resistance and efficiency of mechanical harvesting. Phenotypic analysis of 125 rapeseed accessions across four environments revealed wide variation in PH (100–198 cm) and FBH (15.56–112.4 cm), with high broad-sense heritability (H2 = 81.59% for PH, 77.69% for FBH), and significant positive correlations between traits. To understand the genetic control of PH and FBH, a genome-wide association study (GWAS) of a natural population was conducted, covering 2,131,705 genome variants across four environments. The 13 QTLs for PH and 15 for FBH were identified. Meta-analysis revealed that 28.57% of these loci overlapped with previously reported QTLs. Haplotype analysis confirmed significant effects of these loci on the traits. Candidate genes for PH and FBH, respectively, were identified based on linkage disequilibrium and functional predictions. However, five novel loci lacked nearby annotated genes. The candidate genes are linked to traits in Arabidopsis and other species, as well as to phytohormone response and cell development, and cell development. Notably, MOS1 gene copies (BnaA03G0481200ZS and BnaC07G0459400ZS) were associated with PH and FBH, indicating their multifunctional potential. Additionally, BnaA05G0163200ZS, with no functional annotation, emerged as a crucial gene for plant architecture. This study provides new genetic insights and may enhance marker-based breeding for ideotypes in rapeseed. Full article
Show Figures

Figure 1

21 pages, 6208 KiB  
Article
Genome Wide Identification of Terpenoid Metabolism Pathway Genes in Chili and Screening of Key Regulatory Genes for Fruit Terpenoid Aroma Components
by Mengxian Yang, Kun Wu, Genying Fu, Shuang Yu, Renquan Huang, Zhiwei Wang, Xu Lu, Huizhen Fu, Qin Deng and Shanhan Cheng
Horticulturae 2025, 11(6), 586; https://doi.org/10.3390/horticulturae11060586 - 25 May 2025
Viewed by 139
Abstract
Aroma is an important processing and consumption quality trait of fruits and vegetables, and terpenes produced from the terpenoid metabolic pathway are a critical component of chili fruit flavor. This pathway involves the participation of at least eighteen enzymes, such as AACT, HMGS, [...] Read more.
Aroma is an important processing and consumption quality trait of fruits and vegetables, and terpenes produced from the terpenoid metabolic pathway are a critical component of chili fruit flavor. This pathway involves the participation of at least eighteen enzymes, such as AACT, HMGS, HMGR, MVK, PMK, MVD, FPPS, GGPPS, DXS, DXR, MCT, CMK, MECPS, HDS, HDR, GPPS, IDI, and TPS. In this study, the genome wide information, expression characteristics, and relationship with terpenoids of terpenoid pathway genes are analyzed in C. annuum. The results showed that C. annuum has sixty-seven genes related to terpene metabolic pathways. Non-targeted metabolomics studies found that the content of aromatic terpenoids α-calacorene, α-cubene, and cis-β-farnesene increased with fruit development in HDL fruits, while linalool and nerolidol were much higher in GLD608. Correlation analyses between qRT-PCR and metabolome data showed that the expression levels of CaHMGS-3, CaMVD-1, CaCMK-1, and CaGGPPS-2 were positively correlated with the content of linalool, a flavor monoterpene alcohol. CaMECPS-1 was positively correlated with cis-β-farnesene, and there was also a significant positive regulatory relationship between CaTPS-5 and nerolidol relationship. In conclusion, the present study provides genetic resources for further studies on the gene regulatory mechanisms of flavor synthesis and terpenoid metabolic pathways in chili. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

16 pages, 2329 KiB  
Article
Ibα-XYL1 Interfered Expression Decreases Starch Granule Size and Increases Soluble Sugar Content to Improve Steamed Sweetpotato Storage Root Taste
by Chen Li, Meng Kou, Chang You, Meng Ma, Weihan Song, Wei Tang, Hui Yan, Runfei Gao, Xin Wang, Yungang Zhang and Qiang Li
Int. J. Mol. Sci. 2025, 26(11), 5015; https://doi.org/10.3390/ijms26115015 - 23 May 2025
Viewed by 150
Abstract
As an important characteristic and horticultural crop in China, sweetpotato can be used as food, industrial raw material, vegetable, and ornamental material. Purple sweetpotato for table use is rich in anthocyanin, which leads to some bitter taste, so it needs further quality improvement. [...] Read more.
As an important characteristic and horticultural crop in China, sweetpotato can be used as food, industrial raw material, vegetable, and ornamental material. Purple sweetpotato for table use is rich in anthocyanin, which leads to some bitter taste, so it needs further quality improvement. Genetic engineering technology is an effective method to improve crop traits, but there are few reports on genes that can improve sweetpotato sweetness and taste. A xylosidase gene (Ibα-XYL1) was cloned from sweetpotato variety ‘Yanshu 25’ with a fragment size of 2796 bp and encoding 932 amino acid sequences. It has a typical transmembrane domain and three functional domains, which are localized at cell membrane. Reduction in Ibα-XYL1 gene expression had no significant effect on the expansion characteristics and anthocyanin content of sweetpotato storage root (SPSR), but it could up-regulate the expression of sucrose synthesis related genes (SuS, SuPS) and promote the accumulation of soluble sugar in fresh transgenic SPSR. At the same time, it could up-regulate the expression of genes related to starch synthesis modifications (GASS, SBE) and starch decomposition (AMY and BAM), reduce the starch granule size and the starch pasting temperature, promote the conversion of starch to maltose, increase the soluble sugar content, and improve the sweetness and taste of steamed transgenic SPSR. The results are of great significance for quality improvement of sweetpotato. Full article
(This article belongs to the Special Issue Advances in Genetics and Breeding Research in Horticultural Crops)
Show Figures

Figure 1

24 pages, 1640 KiB  
Review
A Review of Applying Drones and Remote Sensing Technology in Mangrove Ecology
by Wenjie Xu, Xiaoguang Ouyang, Xi Xiao, Yiguo Hong, Yuan Zhang, Zhihao Xu, Bong-Oh Kwon and Zhifeng Yang
Forests 2025, 16(6), 870; https://doi.org/10.3390/f16060870 - 22 May 2025
Viewed by 229
Abstract
: Mangrove forests are one of the ecosystems with the richest biodiversity and the highest functional value of ecosystem services in the world. For mangrove research, it is particularly important to facilitate mangrove mapping, plant species classification, biomass, and carbon sink estimation using [...] Read more.
: Mangrove forests are one of the ecosystems with the richest biodiversity and the highest functional value of ecosystem services in the world. For mangrove research, it is particularly important to facilitate mangrove mapping, plant species classification, biomass, and carbon sink estimation using remote sensing technologies. Recently, more and more studies have combined unmanned aerial vehicles and remote sensing technology to estimate plant traits and the biomass of mangrove forests. Various multispectral and hyperspectral data are used to establish various vegetation indices for plant classification, and data models for biomass estimation and carbon sink calculation. This study systematically reviews the use of remote sensing and unmanned aerial vehicles in mangrove studies during the past three decades based on 2424 peer-reviewed papers. By synthesizing these studies, we identify the pros and cons of different indices and models developed from remote sensing technologies by sorting out past cases. Specifically, we review the use of remote sensing technologies in mapping the past and present area, plant species composition, and biomass of mangrove forests and examine the threats to the degradation of mangrove forests. Our findings reveal that there is increasing integration of machine learning and remote sensing to facilitate mangrove mapping and species identification. Moreover, multiple sources of remote sensing data tend to be combined to improve species classification accuracy and enhance the precision of mangrove biomass estimates when integrated with field-based data. Full article
Show Figures

Figure 1

15 pages, 1610 KiB  
Article
Growth and Yield of Two High-Density Tuono Almond Trees Planted at Two Different Intra-Row Spacings
by Annalisa Tarantino, Laura Frabboni and Grazia Disciglio
Agriculture 2025, 15(10), 1095; https://doi.org/10.3390/agriculture15101095 - 19 May 2025
Viewed by 210
Abstract
One of the key techniques for successful almond tree cultivation in newly irrigated areas is increasing planting density. To investigate this, field experiments were carried out over five consecutive growing seasons (2019–2023) to evaluate the effects of two different tree densities on the [...] Read more.
One of the key techniques for successful almond tree cultivation in newly irrigated areas is increasing planting density. To investigate this, field experiments were carried out over five consecutive growing seasons (2019–2023) to evaluate the effects of two different tree densities on the vegetative growth and productivity of almond trees (Prunus dulcis, cv. Tuono) in a semi-arid climate in Southern Italy. The two planting densities tested were 1660 trees per hectare (achieved with 1.5 m intra-row spacing × 4.0 m inter-row spacing) and 833 trees per hectare (3.0 m × 4.0 m spacing). The results showed that significantly lower values of annual shoot length were recorded in both 2020 and 2021, years characterized by late frosts in March and April. However, with the exception of the first year (2019), when the plants had not yet been influenced by the different planting densities, the annual shoot length was significantly higher in the lowest planting density compared to the highest one in the following years. Additionally, higher annual trunk growth values were recorded at the lower planting density compared to the higher density. By the end of the five seasons, trees at the lower density showed a cumulative trunk growth of 177 mm, whereas those at the higher density reached only 137 mm. No significant effect of the two different tree planting densities on overall fruit development, specifically length, width, and thickness, was observed. As the trees matured, kernel yield per tree increased under both planting densities. However, significantly higher individual tree yields were recorded in the lower-density configuration, reaching 2.70 kg per tree by the end of five seasons, compared to 1.68 kg per tree in the high-density arrangement. In contrast, kernel yield per hectare was greater in the densely planted configuration, achieving 2.81 t ha−1, whereas the lower-density planting resulted in a yield of 2.25 t ha−1 by the end of the same period. Furthermore, no significant differences were observed between the two tree planting densities in terms of the percentage of hull per fruit, kernel per nut, or the occurrence of double seeds. Similarly, morphological traits of the nuts and kernels, such as weight, length, width, and thickness, remained unaffected. However, slightly higher kernel weights were noted at the lower planting density. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

15 pages, 2940 KiB  
Article
Changes in Plant Nitrogen Uptake Strategies Following Vegetation Recovery in Karst Regions
by Lin Yang, Lijun Liu, Hui Yang, Shuting Yang, Tongbin Zhu, Lei Meng and Dongni Wen
Forests 2025, 16(5), 839; https://doi.org/10.3390/f16050839 - 18 May 2025
Viewed by 177
Abstract
Understanding plant nitrogen (N) uptake strategies during vegetation recovery is essential for restoring and rehabilitating degraded ecosystems. However, there are few studies on plant N uptake strategies in karst regions. In this study, space-for-time substitution was used to investigate the dynamic changes in [...] Read more.
Understanding plant nitrogen (N) uptake strategies during vegetation recovery is essential for restoring and rehabilitating degraded ecosystems. However, there are few studies on plant N uptake strategies in karst regions. In this study, space-for-time substitution was used to investigate the dynamic changes in plant N uptake strategies during vegetation restoration. Grassland, shrub–grassland, shrubland, and woodland naturally recovering in karst ecosystems were chosen as the research objects. The dominant species at each stage were investigated. Dominant plant N uptake rates were measured using the 15N labeling technique, and plant root functional traits and available soil N were determined. Our results showed that soil inorganic N content and composition varied significantly with vegetation recovery. In early vegetation recovery stages, the soil inorganic N content was low and dominated by ammonium (NH4+), while in the late stages, soil inorganic N content increased, and nitrate (NO3) became the dominant form. In early vegetation recovery stages, dominant plants preferentially absorbed NH4+, contributing to 90.3%–98.5% of the total N uptake. With vegetation recovery, plants increased the NO3 uptake ratio from 1.48%–9.42% to 30.1%–42.6%. Additionally, the root functional traits of dominant plants changed significantly during vegetation recovery. With vegetation recovery, specific root lengths and specific root areas decreased, while root N content and plant N uptake rates increased. In summary, plants developed N uptake strategies coordinated with soil N supply by modifying root functional traits following vegetation recovery in karst regions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 1487 KiB  
Article
Genome-Wide Association Analysis of Sweet Pepper (Capsicum annuum) Based on Agronomic Traits Using PepperSNP50K
by Yaolong Wang, Entong Li, Jiawei Lu, Jing Wang, Qiaolu Zang, Yanping Liang, Ruxia Tian, Changwei Zhang, Fangling Jiang and Yan Cheng
Plants 2025, 14(10), 1506; https://doi.org/10.3390/plants14101506 - 17 May 2025
Viewed by 246
Abstract
As one of the most important vegetables globally, peppers have garnered significant attention from breeders due to their diverse agronomic traits, including plant type, leaf shape, and maturity. Understanding the genetic mechanisms underlying these traits is crucial for systematic advancements in sweet pepper [...] Read more.
As one of the most important vegetables globally, peppers have garnered significant attention from breeders due to their diverse agronomic traits, including plant type, leaf shape, and maturity. Understanding the genetic mechanisms underlying these traits is crucial for systematic advancements in sweet pepper breeding. In this study, leveraging the PepperSNP50K liquid breeding chip, we conducted a comprehensive analysis of horticultural traits and genetic diversity using sweet pepper germplasm samples. Initially, the sweet pepper populations were analyzed using SNP-based liquid chip technology. Subsequently, phenotypic surveys were performed on 217 sweet pepper samples, and the collected phenotypic data were integrated with SNP markers to conduct a genome-wide association study (GWAS) of key agronomic traits. Among the 25 horticultural traits evaluated, 11 exhibited significant associations with 54 SNP polymerization regions and 193 candidate genes. These findings provide a robust foundation for the utilization of sweet pepper germplasm resources and the development of new, improved varieties. Furthermore, in this study, we identified Caz06g05770 (Lycopene beta-cyclase) as a candidate gene responsible for the color of mature ripe fruits. This research not only enhances our understanding of the genetic basis of sweet pepper traits but also offers a practical roadmap for advancing breeding programs and boosting agricultural productivity. By bridging the gap between genetic research and practical breeding applications, this study paves the way for the development of high-yield, high-quality sweet pepper varieties tailored to meet the growing demands of global agriculture. Full article
(This article belongs to the Special Issue Omics in Horticultural Crops)
Show Figures

Figure 1

26 pages, 7848 KiB  
Article
The Impact of Inundation and Nitrogen on Common Saltmarsh Species Using Marsh Organ Experiments in Mississippi
by Kelly M. San Antonio, Wei Wu, Makenzie Holifield and Hailong Huang
Water 2025, 17(10), 1504; https://doi.org/10.3390/w17101504 - 16 May 2025
Viewed by 171
Abstract
Sea level rise is an escalating threat to saltmarsh ecosystems as increased inundation can lead to decreased biomass, lowered productivity, and plant death. Another potential stressor is elevated nitrogen often brought into coastal regions via freshwater diversions. Nitrogen has a controversial impact on [...] Read more.
Sea level rise is an escalating threat to saltmarsh ecosystems as increased inundation can lead to decreased biomass, lowered productivity, and plant death. Another potential stressor is elevated nitrogen often brought into coastal regions via freshwater diversions. Nitrogen has a controversial impact on belowground biomass, potentially affecting saltmarsh stability. In this study, we examined the effects of inundation and nitrogen on common saltmarsh plants (Spartina alterniflora and Spartina patens) placed within two marsh organs (a collection of PVC pipes at different levels, the varied elevation levels expose the plants to different inundation amounts) located in the Pascagoula River, Mississippi, USA, with six rows and eight replicates in each row. We randomly fertilized four replicates in each row with 25 g/m2 of NH4+-N every two-three weeks during the growing season in 2021 and 2022. We concurrently collected vegetative traits such as plant height and leaf count to better understand strategies saltmarshes utilize to maximize survival or growth. We harvested half of the vegetation in Year 1 and the remaining in Year 2 to evaluate the impact of inundation and nitrogen on above- and belowground biomass at different temporal scales. We developed Bayesian models that show inundation had a largely positive impact on S. alterniflora and a mostly negative impact S. patens, suggesting that S. alterniflora will adapt better to increasing inundation than S. patens. Additionally, fertilized plants from both species had higher aboveground biomass than non-fertilized plants for both years, with nitrogen addition only showing impact on belowground biomass in the long term. Our results highlight the importance of long-term study to facilitate more-informed restoration and conservation efforts in coastal wetlands while accounting for climate change and sea level rise. Full article
(This article belongs to the Special Issue New Insights into Sea Level Dynamics and Coastal Erosion)
Show Figures

Figure 1

15 pages, 4324 KiB  
Article
QTL-Seq and Fine-Mapping Analyses Identify QTL and Candidate Genes Controlling Snake-like Pod Surface Trait in Vegetable Cowpea Yardlong Bean
by Khwanruedee Thepphomwong, Makawan Srichan, Artitaya Deeroum, Kularb Laosatit and Prakit Somta
Plants 2025, 14(10), 1447; https://doi.org/10.3390/plants14101447 - 12 May 2025
Viewed by 258
Abstract
Yardlong bean is a vegetable type of cowpea grown for fresh and immature pods. “Thua Ngu” is a specialty yardlong bean cultivar with its unique snake-like pod surface and highly crispy pods that may be useful for the breeding of a new cultivar(s). [...] Read more.
Yardlong bean is a vegetable type of cowpea grown for fresh and immature pods. “Thua Ngu” is a specialty yardlong bean cultivar with its unique snake-like pod surface and highly crispy pods that may be useful for the breeding of a new cultivar(s). The objectives of this study were to determine the mode of inheritance of the snake-like pod trait and locate the genome region controlling this trait in Thua Ngu. Microscopic observation revealed that the shape, size, and organization of cells of immature and mature pods of Thua Ngu were clearly different from those of “Raya” (normal yardlong bean). Fiber analysis showed that lignin content in immature and mature pods of Thua Ngu was 2.05- and 3.45-fold higher than that in Raya. Segregation analysis using F2 and F2:3 populations of the cross Thua Ngu × Raya demonstrated that a single gene controls the snake-like pod trait. QTL-seq analysis using the F2 population revealed a major locus, qSlp4.1, for the snake-like pod trait. Fine-mapping using F2 and F2:3 populations delimited qSlp4.1 to a 152.88 Kbp region containing nine genes. Genes with functions involved in cell morphology and/or lignin formation, including Vigun04g163400, Vigun04g163600, and Vigun04g163700, were identified as candidate genes for the snake-like pod trait. Full article
(This article belongs to the Special Issue Recent Advances in Plant Genetics and Genomics)
Show Figures

Figure 1

33 pages, 2794 KiB  
Article
Soil Bulk Density, Aggregates, Carbon Stabilization, Nutrients and Vegetation Traits as Affected by Manure Gradients Regimes Under Alpine Meadows of Qinghai–Tibetan Plateau Ecosystem
by Mahran Sadiq, Nasir Rahim, Majid Mahmood Tahir, Aqila Shaheen, Fu Ran, Guoxiang Chen and Xiaoming Bai
Plants 2025, 14(10), 1442; https://doi.org/10.3390/plants14101442 - 12 May 2025
Viewed by 268
Abstract
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence [...] Read more.
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence SOC stability, grassland soil, forage structure and nutritional quality. However, the responses of SOC fractions, soil and forage structure and quality to the influence of manure gradient practices remain unclear, particularly at Tianzhu belt, and require further investigation. A field study was undertaken to evaluate the soil bulk density, aggregate fractions and dynamics in SOC concentration, permanganate oxidizable SOC fractions, SOC stabilization and soil nutrients at the soil aggregate level under manure gradient practices. Moreover, the forage biodiversity, aboveground biomass and nutritional quality of alpine meadow plant communities were also explored. Four treatments, i.e., control (CK), sole sheep manure (SM), cow dung alone (CD) and a mixture of sheep manure and cow dung (SMCD) under five input rates, i.e., 0.54, 1.08, 1.62, 2.16 and 2.70 kg m−2, were employed under randomized complete block design with four replications. Our analysis confirmed the maximum soil bulk density (BD) (0.80 ± 0.05 g cm−3) and micro-aggregate fraction (45.27 ± 0.77%) under CK, whilst the maximum macro-aggregate fraction (40.12 ± 0.54%) was documented under 2.70 kg m−2 of SMCD. The SOC, very-labile C fraction (Cfrac1), labile C fraction (Cfrac2) and non-labile/recalcitrant C fraction (Cfrac4) increased with manure input levels, being the highest in 2.16 kg m−2 and 2.70 kg m−2 applications of sole SM and the integration of 50% SM and 50% CD (SMCD), whereas the less-labile fraction (Cfrac3) was highest under CK across aggregate fractions. However, manures under varying gradients improved SOC pools and stabilization for both macro- and micro-aggregates. A negative response of the carbon management index (CMI) in macro-aggregates was observed, whilst CMI in the micro-aggregate fraction depicted a positive response to manure addition with input rates, being the maximum under sole SM addition averaged across gradients. Higher SOC pools and CMI under the SM, CD and SMCD might be owing to the higher level of soil organic matter inputs under higher doses of manures. Moreover, the highest accumulation of soil nutrients,, for instance, TN, AN, TP, AP, TK, AK, DTPA extractable Zn, Cu, Fe and Mn, was recorded in SM, CD and SMCD under varying gradients over CK at both aggregate fractions. More nutrient accumulation was found in macro-aggregates over micro-aggregates, which might be credited to the physical protection of macro-aggregates. Overall, manure addition under varying input rates improved the plant community structure and enhanced meadow yield, plant community diversity and nutritional quality more than CK. Therefore, alpine meadows should be managed sustainably via the adoption of sole SM practice under a 2.16 kg m−2 input rate for the ecological utilization of the meadow ecosystem. The results of this study deliver an innovative perspective in understanding the response of alpine meadows’ SOC pools, SOC stabilization and nutrients at the aggregate level, as well as vegetation structure, productivity and forage nutritional quality to manure input rate practices. Moreover, this research offers valuable information for ensuring climate change mitigation and the clean production of alpine meadows in the Qinghai–Tibetan Plateau area of China. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 2206 KiB  
Article
The Hybrid Retrieval of Leaf Anthocyanin Content Using Four Machine Learning Methods
by Yingying Li, Qiuxiang Yi and Yaoliang Chen
Forests 2025, 16(5), 804; https://doi.org/10.3390/f16050804 - 11 May 2025
Viewed by 293
Abstract
Leaf anthocyanins are essential for plants to resist biotic and abiotic stresses. The timely and accurate estimation of leaf anthocyanin content (Lanth) plays a vital role in supporting agriculture and forestry management. To date, numerous satisfactory results have been obtained using [...] Read more.
Leaf anthocyanins are essential for plants to resist biotic and abiotic stresses. The timely and accurate estimation of leaf anthocyanin content (Lanth) plays a vital role in supporting agriculture and forestry management. To date, numerous satisfactory results have been obtained using hybrid methods for vegetation trait estimation. However, the feasibility of the hybrid retrieval of Lanth is underexplored. In this study, four typical machine learning algorithms—an artificial neural network (ANN), a support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF)—were investigated to estimate Lanth with a hybrid scheme. The results showed that satisfactory accuracy (R2 > 0.57 and RMSE < 2.97 μg/cm2) was obtained with all four machine learning algorithms. Among all constructed models, GPR showed superior performance. The best GPR model utilized the first three principal components derived from the logarithmic transformation of reflectance (log(1/reflectance)) as independent variables, achieving an R2 value of 0.76 and an RMSE of 2.24 μg/cm2. However, compared to empirical models directly built from the in situ dataset, the hybrid scheme had reduced accuracy owing to the uncertainty between the simulated and in situ datasets. Nevertheless, the present study further verifies the potential of hybrid retrieval for Lanth and supports its future application in Lanth mapping. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

Back to TopTop