Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (161)

Search Parameters:
Keywords = vernalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 645 KB  
Review
Vernalization of Winter Crops Increases Photosynthetic Energy Conversion Efficiency and Seed Yield
by Norman P. A. Hüner, Alexander G. Ivanov, Beth Szyszka-Mroz, Leon A. Bravo, Leonid V. Savitch and Marianna Krol
Plants 2025, 14(15), 2357; https://doi.org/10.3390/plants14152357 - 31 Jul 2025
Viewed by 470
Abstract
We summarize our present knowledge of the regulation of photostasis and photosynthetic performance versus photoprotection in response to vernalization and conclude that the enhanced photosynthetic performance of winter crops is due to an inherent increase in photosynthetic energy conversion efficiency induced by vernalization [...] Read more.
We summarize our present knowledge of the regulation of photostasis and photosynthetic performance versus photoprotection in response to vernalization and conclude that the enhanced photosynthetic performance of winter crops is due to an inherent increase in photosynthetic energy conversion efficiency induced by vernalization which translates into high seed yield in the field as well as under controlled environment conditions. This is consistent with the published data for enhanced photosynthetic performance of the only two extant terrestrial angiosperms, Colobanthus quitensis and Deschampsia antarctica, native to the frigid conditions of terrestrial Antarctica. The Cold Binding factor family of transcription factors (CBFs/DREBs) governs the enhanced photosynthetic performance of winter cereals as well as the Antarctic angiosperms. In contrast to winter crops, spring varieties survive cold environments by stimulating photoprotection at the expense of photosynthetic performance like that observed for green algae and cyanobacteria. Consequently, this minimizes the photosynthetic energy conversion efficiency of spring varieties and limits their seed yield upon cold acclimation. This review provides critical insights into the regulation of photostasis and the balance between photosynthetic performance and photoprotection in plants and how vernalization has enhanced photosynthetic energy conversion, which is essential for understanding plant adaptation to cold environments and optimizing agricultural productivity for improving crop resilience and yield in challenging climates. Full article
Show Figures

Figure 1

18 pages, 1445 KB  
Systematic Review
Topical Use of Tacrolimus in Corneal and Ocular Surface Pathologies: A Systematic Review
by Georgios Katonis, Argyrios Tzamalis, Ioannis Tsinopoulos and Nikolaos Ziakas
J. Clin. Med. 2025, 14(15), 5347; https://doi.org/10.3390/jcm14155347 - 29 Jul 2025
Viewed by 821
Abstract
Background/Objectives: Tacrolimus, an immunosuppressant, is increasingly used topically in ophthalmology, particularly for conditions like vernal keratoconjunctivitis and post-keratoplasty rejection prophylaxis. This systematic review aims to evaluate the efficacy and safety of topical tacrolimus in these ocular conditions. Methods: A thorough search [...] Read more.
Background/Objectives: Tacrolimus, an immunosuppressant, is increasingly used topically in ophthalmology, particularly for conditions like vernal keratoconjunctivitis and post-keratoplasty rejection prophylaxis. This systematic review aims to evaluate the efficacy and safety of topical tacrolimus in these ocular conditions. Methods: A thorough search was conducted in PubMed and Cochrane Library for relevant studies published up to 16 March 2025. Studies were eligible for inclusion if they were randomized controlled trials investigating topical tacrolimus in human ocular disease, were published in English, and reported clearly defined outcomes. Exclusion criteria included non-randomized studies, animal studies, systemic treatments, non-English publications, and studies lacking clearly reported outcomes. Data regarding study design, patient demographics, intervention details, and outcomes were extracted and analyzed. The Cochrane risk-of-bias tool (RoB 2.0) was used to assess the risk of bias. Results: A total of 10 studies met the inclusion criteria, were retrieved, and were categorized as not highly biased after the risk-of-bias assessment. These studies were included in the systematic review, where a qualitative analysis took place. Our analysis revealed that the topical use of tacrolimus showed promising results, as it improved clinical signs and symptoms in most patients. In half of the studies, tacrolimus demonstrated superior efficacy compared to the control group, while in the remaining studies, it showed equivalent efficacy. Adverse effects, such as a burning sensation, were noted in 7/10 studies but were generally mild. The methodologies were somewhat heterogeneous, and some studies had small sample sizes. Conclusions: Topical tacrolimus shows promising effects in managing various ocular surface diseases. While randomized controlled trials provide evidence, further research with larger sample sizes is necessary to solidify its efficacy and safety profile compared to other immunosuppressants. Full article
(This article belongs to the Special Issue Advancements in Cornea Transplantation)
Show Figures

Figure 1

20 pages, 2613 KB  
Review
The Genetic Basis of Wheat Spike Architecture
by Zhen Ji, Xin Liu, Fei Yan, Shouqing Wu and Yanfang Du
Agriculture 2025, 15(15), 1575; https://doi.org/10.3390/agriculture15151575 - 22 Jul 2025
Viewed by 631
Abstract
Wheat is one of the three major staple crops globally. The wheat spike serves as the primary structure bearing wheat grains. Spike architectures of wheat have a direct impact on the number of grains per spike, and thus the grain yield per spike. [...] Read more.
Wheat is one of the three major staple crops globally. The wheat spike serves as the primary structure bearing wheat grains. Spike architectures of wheat have a direct impact on the number of grains per spike, and thus the grain yield per spike. The development of wheat spike morphology is conserved to some extent in cereal crops, yet also exhibits differences, being strictly regulated by photoperiod and temperature. This paper compiles QTLs and genes related to wheat spike traits that have been published over the past two decades, summarizes the photoperiod and vernalization pathways influencing the transition from vegetative to reproductive growth, and organizes the key regulatory networks controlling spikelet and floret development. Additionally, it anticipates advancements in wheat gene cloning methods, challenges in optimizing wheat spike architecture for high yield and future directions in wheat spike trait research. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

26 pages, 3710 KB  
Article
Global Transcriptome and Weighted Gene Co-Expression Network Analyses of Cold Stress Responses in Chinese Cabbage
by Jizong Zhang, Songtao Liu, Huibin Li, Mengmeng Sun, Baoyue Yan, Peng Zhang and Lifeng Zhang
Genes 2025, 16(7), 845; https://doi.org/10.3390/genes16070845 - 20 Jul 2025
Viewed by 525
Abstract
Background/Objectives: Chinese cabbage (Brassica rapa ssp. Pekinensis, AA) growth and development is highly sensitive to cold temperatures. Prolonged low-temperature exposure during early growth stages can induce premature bolting, which reduces market quality and yield. Methods: Here, using comparative leaf RNA-seq transcriptome [...] Read more.
Background/Objectives: Chinese cabbage (Brassica rapa ssp. Pekinensis, AA) growth and development is highly sensitive to cold temperatures. Prolonged low-temperature exposure during early growth stages can induce premature bolting, which reduces market quality and yield. Methods: Here, using comparative leaf RNA-seq transcriptome analysis of plants grown at 6, 9, 12, and 15 °C, we explored key genes and metabolic pathways regulating Chinese cabbage cold response. Results: RNA-seq transcriptome analysis identified a total of 1832 differentially expressed genes (DEGs) in the three comparison groups, with 5452, 1861, and 752 DEGs specifically expressed in the A6_vs_A15, A9_vs_A15, and A12_vs_A15 groups, respectively. KEGG enrichment analysis of DEGs showed that sulfur metabolism, secondary metabolites biosynthesis and photosynthesis pathways were mostly affected by cold stress. K-means clustering revealed distinct expression profiles among the DEGs enriched in cold stress response-associated clusters. Subsequently, DEGs were divided into 18 modules by WGCNA, whereupon co-expression genes that clustered into similar modules exhibited diverse expression and were annotated to various GO terms at different temperatures. Module-trait association analysis revealed M1, M2, M3, and M6 modules as key clusters potentially linked to vernalization-related processes. These modules harbored candidate hub genes encoding transcription factors (including MYB, bZIP, and WRKY), protein kinases, and cold-stress-responsive genes. Additionally, phenotypic analysis showed that 12 °C to 15 °C supported optimal growth, whereas <9 °C temperature inhibited growth. Physiological measurements showed increased antioxidant enzyme activity and proline accumulation at 6 °C. Conclusions: Overall, our study provides a set of candidate cold-stress-responsive genes and co-expression modules that may support cold stress tolerance breeding in Chinese cabbage. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

24 pages, 1334 KB  
Article
Evaluation of the Global White Lupin Collection Reveals Significant Associations Between Homologous FLOWERING LOCUS T Indels and Flowering Time, Providing Validated Markers for Tracking Spring Ecotypes Within a Large Gene Pool
by Wojciech Bielski, Anna Surma, Michał Książkiewicz and Sandra Rychel-Bielska
Int. J. Mol. Sci. 2025, 26(14), 6858; https://doi.org/10.3390/ijms26146858 - 17 Jul 2025
Viewed by 334
Abstract
FLOWERING LOCUS T (FT) is a key integrator of flowering pathways. White lupin, a grain legume, encodes four FT homologs: LalbFTa1, LalbFTa2, LalbFTc1, and LalbFTc2. Widespread distribution of white lupin implies diverse phenological adaptations to contrasting ecosystems. [...] Read more.
FLOWERING LOCUS T (FT) is a key integrator of flowering pathways. White lupin, a grain legume, encodes four FT homologs: LalbFTa1, LalbFTa2, LalbFTc1, and LalbFTc2. Widespread distribution of white lupin implies diverse phenological adaptations to contrasting ecosystems. Recent studies highlighted associations between FT indels and flowering regulation. Therefore, we surveyed the global white lupin collection for the presence of such indels and potential links to phenology. A panel of 626 white lupin genotypes, representing several European and African agro-climates, was phenotyped under a long-day photoperiod in a two-year study, showing up to 80 days of flowering time difference between early landraces from Eastern Mediterranean and late accessions from France, Madeira, the Canaries, Greece, Italy, and the Azores. As many as seventeen indel variants were identified for LalbFTc1, twelve for LalbFTa2, nine for LalbFTa1, and four for LalbFTc2, yielding roughly three hundred allelic combinations. Significant correlations with phenology were confirmed for one LalbFTa1 indel and twelve LalbFTc1 indels. A large, highly correlated LalbFTc1 indel was revealed to be conserved among all domesticated Old World lupins, carrying all FTc1-promoter candidate binding sites of the same major floral repressor, AGAMOUS-LIKE 15. A small LalbFTa1 indel, providing additional contribution to earliness, showed homology between white and yellow lupins. LalbFTc1 indel-based PCR markers revealed high discriminatory power towards early (PR_42a and PR_71b) or late (PR_58c, PR_36b, PR_80, and PR_60b) flowering. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

17 pages, 1470 KB  
Article
Combination of Vrn Alleles Assists in Optimising the Vernalization Requirement in Barley (Hordeum vulgare L.)
by Raushan Yerzhebayeva, Tamara Bazylova, Gaziza Zhumaliyeva, Sholpan Bastaubayeva, Askar Baimuratov, Burabai Sariev, Galym Shegebayev, Namuk Ergün and Yuri Shavrukov
Agriculture 2025, 15(13), 1389; https://doi.org/10.3390/agriculture15131389 - 28 Jun 2025
Viewed by 433
Abstract
Vernalization genes (Vrn) play a key role in plant adaptation to various geographic locations and their allelic diversity can have fundamental importance for breeding programs. In the current study, 340 barley genotypes were studied, including germplasm accessions and advanced breeding lines. [...] Read more.
Vernalization genes (Vrn) play a key role in plant adaptation to various geographic locations and their allelic diversity can have fundamental importance for breeding programs. In the current study, 340 barley genotypes were studied, including germplasm accessions and advanced breeding lines. For phenotype evaluation in South-Eastern Kazakhstan, the transition of barley plants from vegetative to reproductive stages was estimated in field trials with spring- and winter-sown seeds. For molecular analysis, 10 previously described molecular markers were studied in three barley vernalization loci: Vrn-H1, Vrn-H2 and Vrn-H3. The comparison between molecular results and phenotypes for plant development confirmed 211 spring genotypes, 56 winter and 28 facultative. Vrn-H1 haplotypes 1A and recessive allele vrn-H3 were in the majority. Best spring and winter high-yielding advanced breeding lines were identified. Based on Vrn allele combination, a breeding line 76/13-4 with facultative type development showed superior results in both winter and spring sowings, presenting a new prospective barley cultivar that can be grown equally either in spring or winter sowing conditions. The presented results can be used for barley marker-assisted selection predicting crosses with favourable combinations of Vrn alleles for prospective breeding line development. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

14 pages, 5685 KB  
Article
Construction of an Overexpression Library for Chinese Cabbage Orphan Genes in Arabidopsis and Functional Analysis of BOLTING RESISTANCE 4-Mediated Flowering Delay
by Ruiqi Liao, Ruiqi Zhang, Xiaonan Li and Mingliang Jiang
Plants 2025, 14(13), 1947; https://doi.org/10.3390/plants14131947 - 25 Jun 2025
Cited by 1 | Viewed by 481
Abstract
Orphan genes (OGs), which are unique to a specific taxon and have no detectable sequence homology to any known genes across other species, play a pivotal role in governing species-specific phenotypic traits and adaptive evolution. In this study, 20 OGs of [...] Read more.
Orphan genes (OGs), which are unique to a specific taxon and have no detectable sequence homology to any known genes across other species, play a pivotal role in governing species-specific phenotypic traits and adaptive evolution. In this study, 20 OGs of Chinese cabbage (Brassica rapa OGs, BrOGs) were transferred into Arabidopsis thaliana by genetic transformation to construct an overexpression library in which 50% of the transgenic lines had a delayed flowering phenotype, 15% had an early flowering phenotype, and 35% showed no difference in flowering time compared to control plants. There were many other phenotypes attached to these transgenic lines, such as leaf color, number of rosette leaves, and silique length. To understand the impact of BrOGs on delayed flowering, BrOG142OE, which showed the most significantly delayed flowering phenotype, was chosen for further analysis, and BrOG142 was renamed BOLTING RESISTANCE 4 (BR4). In BR4OE, the expression of key flowering genes, including AtFT and AtSOC1, significantly decreased, and AtFLC and AtFRI expression increased. GUS staining revealed BR4 promoter activity mainly in the roots, flower buds and leaves. qRT-PCR showed that BR4 primarily functions in the flowers, flower buds, and leaves of Chinese cabbage. BR4 is a protein localized in the nucleus, cytoplasm, and cell membrane. The accelerated flowering time phenotype of BR4OE was observed under gibberellin and vernalization treatments, indicating that BR4 regulates flowering time in response to these treatments. These results provide a foundation for elucidating the mechanism by which OGs regulate delayed flowering and have significance for the further screening of bolting-resistant Chinese cabbage varieties. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 3897 KB  
Article
Allelic Variations in Phenology Genes in Club Wheat (Triticum compactum) and Their Association with Heading Date
by Bárbara Mata and Adoración Cabrera
Int. J. Mol. Sci. 2025, 26(10), 4875; https://doi.org/10.3390/ijms26104875 - 19 May 2025
Viewed by 511
Abstract
The allelic diversity within genes controlling the vernalization requirement (VRN1) and photoperiod response (PPD1) determines the ability of wheat to adapt to a wide range of environmental conditions and influences grain yield. In this study, allelic variations at the [...] Read more.
The allelic diversity within genes controlling the vernalization requirement (VRN1) and photoperiod response (PPD1) determines the ability of wheat to adapt to a wide range of environmental conditions and influences grain yield. In this study, allelic variations at the VRN-A1, VRN-B1, VRN-D1 and PPD-D1 genes were studied for 89 accessions of Triticum compactum from different eco-geographical regions of the world. The collection was evaluated for heading date in both field and greenhouse experiments under a long photoperiod and without vernalization. Based on heading date characteristics, 52 (58.4%) of the genotypes had a spring growth habit, and all of them carried at least one dominant VRN1 allele, while 37 (41.6%) accessions had a winter growth habit and carried the triple recessive allele combination. The photoperiod-sensitive Ppd-D1b allele was detected in 85 (95.5%) accessions and the insensitive Ppd-D1a allele in four (4.5%) accessions. A total of 10 phenology gene profiles (haplotypes) were observed at four major genes in the T. compactum germplasm collection. The LSD test revealed significant differences in the mean heading date among the different spring phenology gene profiles, both in greenhouse and field conditions. In addition, 21 microsatellite markers (simple sequence repeats, SSRs) were used to assess the genetic diversity in the collection. The 21 SSR markers amplified a total of 183 alleles across all the genotypes, with a mean of 3.2 alleles per locus. The polymorphic information content ranged from 0.49 to 0.94, with a mean of 0.84. The results of this study may be useful for both T. compactum and common wheat breeding programs as a source of agronomic traits. Full article
(This article belongs to the Collection Genetics and Molecular Breeding in Plants)
Show Figures

Figure 1

19 pages, 633 KB  
Review
Ocular Manifestations in Children with Vernal Keratoconjunctivitis
by Matteo Capobianco, Marco Zeppieri, Giuseppe Gagliano, Federico Visalli, Fabiana D’Esposito, Roberta Foti, Ludovica Cannizzaro, Daniele Tognetto and Caterina Gagliano
Children 2025, 12(5), 609; https://doi.org/10.3390/children12050609 - 7 May 2025
Viewed by 1447
Abstract
Background: Vernal keratoconjunctivitis (VKC) is a chronic, recurrent, and frequently severe allergic ocular condition predominantly impacting children and adolescents in tropical and subtropical areas. It profoundly affects patients’ quality of life owing to its chronic symptoms and possible vision-threatening effects. Notwithstanding progress in [...] Read more.
Background: Vernal keratoconjunctivitis (VKC) is a chronic, recurrent, and frequently severe allergic ocular condition predominantly impacting children and adolescents in tropical and subtropical areas. It profoundly affects patients’ quality of life owing to its chronic symptoms and possible vision-threatening effects. Notwithstanding progress in comprehending VKC, its ocular symptoms and therapeutic approaches necessitate ongoing assessment. Aims: This review summarizes the main factors to consider when diagnosing, treating, and managing patients with VKC based on the current literature in this field. Methods: This comprehensive review examined peer-reviewed literature from 2010 to 2024 obtained from PubMed. The selection criteria encompassed research addressing the clinical presentation, diagnostic difficulties, and therapy of visual symptoms in pediatric patients with VKC. The publications chosen were those focusing on those that elucidate the pathophysiology, consequences, and innovations in treatment methodologies. Results: The ocular manifestations of VKC are varied and characterized by prominent symptoms such as severe itching, photophobia, lacrimation, and a viscous mucoid discharge. Clinical manifestations range from conjunctival hyperemia and limbal thickening to severe consequences that jeopardize vision, including shield ulcers and keratoconus. Improvements in imaging techniques such as anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy have enhanced diagnostic accuracy. The pharmacological approach has transitioned to steroid-sparing techniques, prioritizing mast cell stabilizers, antihistamines, and immunomodulators such as cyclosporine. Novel therapies, including biologics that target interleukin pathways, demonstrate potential in refractory instances. Nonetheless, access to modern medicines is restricted in resource-limited environments. Conclusions: VKC poses considerable diagnostic and treatment difficulties due to its chronic nature and possible consequences. This review emphasizes the necessity for prompt diagnosis and customized management approaches to avert vision impairment. Despite considerable advancements in comprehending VKC’s etiology and therapy, inequalities in access to sophisticated care highlight the necessity for global activities to guarantee equitable treatment alternatives. Full article
(This article belongs to the Section Pediatric Ophthalmology)
Show Figures

Figure 1

18 pages, 8554 KB  
Article
Low-Temperature and Light Pretreatment Interactively Promote Rapid Flowering, Early Ripening, and Yield Accumulation of Winter Wheat
by Yuanlong Wu, Runnan Shuai, Xiaoxu Zhan, Qiangui Wang, Si Tang, Tingting Gao, Yanyan Zhao, Qichang Yang and Zhonghua Bian
Int. J. Mol. Sci. 2025, 26(9), 4280; https://doi.org/10.3390/ijms26094280 - 30 Apr 2025
Viewed by 587
Abstract
Exposing wheat (Triticum aestivum L.) seeds to a combination of light and low temperatures for 4–6 weeks, followed by transferring to speed breeding (SB) conditions, has been demonstrated to effectively reduce generation time in winter wheat. To reveal the underlying mechanisms of [...] Read more.
Exposing wheat (Triticum aestivum L.) seeds to a combination of light and low temperatures for 4–6 weeks, followed by transferring to speed breeding (SB) conditions, has been demonstrated to effectively reduce generation time in winter wheat. To reveal the underlying mechanisms of accelerated generation advancement in winter wheat, we investigated changes in transcriptome and the subsequent responses in plant growth, flowering of germinated seeds vernalized at 4 °C with white exposure (VL) or under dark conditions (VD) for 4 weeks before sowing, and subsequent growth under SB conditions. Germinated seeds without vernalization were directly sown under SB conditions and served as controls (Control). The results showed that, compared with Control and VD, VL significantly expedited vernalization, resulting in early flowering for around 6 days and accelerated ripening of progeny seeds for 13 days with a higher germination index and vigor index. The transcriptomic analysis revealed that the differently expressed genes (DEGs) involved in GA synthesis and its signal transduction both participated in the light-induced speed vernalization and the subsequent rapid growth and development of winter wheat. The MADS-box transcription factors, especially VRN-A1 and MADS55, might play a vital role in the light- and low-temperature-induced early flowering. Our results stress the importance of light in vernalization and lay the groundwork for further elucidating the mechanisms underlying the light-induced speed vernalization of winter wheat. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2077 KB  
Article
Winter Wheat Vernalization Alleles and Freezing Tolerance at the Seedling and Jointing Stages
by Fangfang Liu, Wenxin Cao, Qiqi Zhang, Yao Li, Heng Zhou and Yingxiu Wan
Plants 2025, 14(9), 1350; https://doi.org/10.3390/plants14091350 - 30 Apr 2025
Viewed by 608
Abstract
This study explores the relationship between allelic variation of the vernalization genes (VRN) and the freezing tolerance at the seedling and jointing stages of winter wheat growth. It provides a basis for molecular marker development for freezing tolerance breeding of winter [...] Read more.
This study explores the relationship between allelic variation of the vernalization genes (VRN) and the freezing tolerance at the seedling and jointing stages of winter wheat growth. It provides a basis for molecular marker development for freezing tolerance breeding of winter wheat. A total of 435 wheat accessions were used to identify and evaluate the freezing tolerance at the seedling stage using field tests, while 192 wheat accessions were used to evaluate the freezing tolerance at the jointing stage in climate chamber tests. The VRN genes of the wheat accessions were detected using allele-specific markers of the VRN-A1, VRN-B1, VRN-D1 and VRN-B3 loci, and the relationship between VRN genotype and freezing tolerance at the two developmental stages was tested. There were significant differences in freezing tolerance between the wheat accessions. Assessing the freezing tolerance of 52 wheat accessions at both the seedling and jointing stages revealed no significant correlation between tolerance at these two stages. The genotypic analysis found that Vrn-D1 was the most frequent dominant allele in winter wheat, while no accession contained the dominant alleles Vrn-A1 and Vrn-B3. Notably, freezing tolerance showed stage-specific genetic regulation; seedling-stage freezing tolerance strongly correlated with vernalization gene allelic combinations (p < 0.05), whereas jointing-stage freezing tolerance exhibited no such association. The presence of all recessive alleles vrn-A1, vrn-B1, vrn-D1 and vrn-B3 was required for strong seedling-stage freezing tolerance. The VRN-D1 marker was effective for screening freezing tolerance materials under the premise that vrn-A1 and vrn-B1 alleles are recessive at winter wheat seedling stage. Full article
Show Figures

Figure 1

21 pages, 3798 KB  
Article
Cyclic Interannual Variation in Monsoon Onset and Rainfall in South Central Arizona, USA
by Frank W. Reichenbacher and William D. Peachey
Climate 2025, 13(4), 75; https://doi.org/10.3390/cli13040075 - 6 Apr 2025
Viewed by 699
Abstract
The North American Monsoon (NAM) in southern Arizona continues to be a topic of interest to many ecologists studying the triggers and characteristics of plant growth and reproduction in relation to the onset of the monsoon. The purpose of this article is to [...] Read more.
The North American Monsoon (NAM) in southern Arizona continues to be a topic of interest to many ecologists studying the triggers and characteristics of plant growth and reproduction in relation to the onset of the monsoon. The purpose of this article is to report interannual variation in the timing of NAM onset found while researching the phenology of Saguaro cactus (Carnegiea gigantea). Using a daily rainfall dataset from 33 stations located in Pima and Pinal Counties, Arizona, from 1990–2022, we analyzed monsoon onset, monsoon precipitation, annual precipitation, and the proportion of annual station precipitation received during the monsoon season. Onset was measured by the first day from 1 June to 30 September with precipitation ≥ 10 mm counted from the day of the vernal equinox of the year. Generalized Additive Models (GAMs) identified sinusoidal waves with a period of 8.6 years and amplitudes of 14–29 days, providing frequency and amplitude estimates for Sinusoidal Regression Models (SRMs). Sinusoidal wave patterns found in the monsoon onset dataset are suggested in monsoon, annual, and proportion of monsoon in station-averaged annual precipitation although in and approximately mirror-image. These unexpected findings may have important implications for forecasters as well as ecologists interested in plant phenology. Full article
Show Figures

Figure 1

21 pages, 1912 KB  
Review
Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome
by Muhammad Aizaz, Lubna, Syed Salman Hashmi, Muhammad Aaqil Khan, Rahmatullah Jan, Saqib Bilal, Kyung-Min Kim, Ahmed Al-Harrasi and Sajjad Asaf
Plants 2025, 14(7), 1131; https://doi.org/10.3390/plants14071131 - 6 Apr 2025
Cited by 2 | Viewed by 1743
Abstract
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex [...] Read more.
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex mechanisms that determine the induction of flowering, highlighting the relationship between hormonal and genetic networks as well as the growing significance of the microbiome. Important genes involved in genetic control include FT, SOC1, and LFY. These genes react to environmental stimuli like photoperiod and vernalization. Auxins, cytokinin, and gibberellins are only a few hormone pathways important for floral growth and timing. The importance of plant–microbe interactions has been emphasized by current research, which shows that the microbiome affects flowering through processes like hormone production and availability of food. A comprehensive understanding of flowering induction is possible by integrating results from microbiota, hormones, and genetics studies, which may improve the breeding and culture of ornamental plants. For researchers to understand the complexity of flowering in ornamental plants and develop unique breeding strategies and improved floral qualities, it is critical to use interdisciplinary approaches, as this comprehensive investigation demonstrates. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

11 pages, 1148 KB  
Review
The Role of FT/TFL1 Clades and Their Hormonal Interactions to Modulate Plant Architecture and Flowering Time in Perennial Crops
by Lillian Magalhães Azevedo, Raphael Ricon de Oliveira and Antonio Chalfun-Junior
Plants 2025, 14(6), 923; https://doi.org/10.3390/plants14060923 - 15 Mar 2025
Viewed by 1231
Abstract
Human nutrition is inherently associated with the cultivation of vegetables, grains, and fruits, underscoring the critical need to understand and manipulate the balance between vegetative and reproductive development in plants. Despite the vast diversity within the plant kingdom, these developmental processes share conserved [...] Read more.
Human nutrition is inherently associated with the cultivation of vegetables, grains, and fruits, underscoring the critical need to understand and manipulate the balance between vegetative and reproductive development in plants. Despite the vast diversity within the plant kingdom, these developmental processes share conserved and interconnected pathways among angiosperms, predominantly involving age, vernalization, gibberellin, temperature, photoperiod, and autonomous pathways. These pathways interact with environmental cues and orchestrate the transition from vegetative growth to reproductive stages. Related to this, there are two key genes belonging to the same Phosphatidylethanolamine-binding proteins family (PEBP), the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), which activate and repress the floral initiation, respectively, in different plant species. They compete for transcription factors such as FLOWERING LOCUS D (FD) and 14-3-3 to form floral activation complexes (FAC) and floral repression complexes (FRC). The FT/TFL1 mechanism plays a pivotal role in meristem differentiation, determining developmental outcomes as determinate or indeterminate. This review aims to explore the roles of FT and TFL1 in plant architecture and floral induction of annual and perennial species, together with their interactions with plant hormones. In this context, we propose that plant development can be modulated by the response of FT and/or TFL1 to plant growth regulators (PGRs), which emerge as potential tools for mitigating the adverse effects of environmental changes on plant reproductive processes. Thus, understanding these mechanisms is crucial to address the challenges of agricultural practices, especially in the face of climate change. Full article
(This article belongs to the Special Issue Mechanisms of Plant Hormones in Plant Development and Reproduction)
Show Figures

Figure 1

17 pages, 4798 KB  
Article
Identification of the MADS-Box Gene Family and the Key Role of BrAGL27 in the Regulation of Flowering in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by Xinyu Gao, Yang Li, Yun Dai, Xiangqianchen Li, Can Huang, Shifan Zhang, Fei Li, Hui Zhang, Guoliang Li, Rifei Sun, Huanzhong Song, Li Zhang, Zhendong Chen and Shujiang Zhang
Int. J. Mol. Sci. 2025, 26(6), 2635; https://doi.org/10.3390/ijms26062635 - 14 Mar 2025
Cited by 1 | Viewed by 686
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a key vegetable crop in Asia, but its commercial value is often reduced by premature flowering triggered by vernalization. The molecular mechanisms behind this process are not fully understood. MADS-box genes, as crucial [...] Read more.
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a key vegetable crop in Asia, but its commercial value is often reduced by premature flowering triggered by vernalization. The molecular mechanisms behind this process are not fully understood. MADS-box genes, as crucial transcriptional regulators, play vital roles in plant development, including flowering. In this study, 102 MADS-box genes were identified in Chinese cabbage through bioinformatics analyses, covering phylogeny, chromosomal localization, and gene structure. Real-time quantitative PCR and RNA-seq data analysis revealed that the expression level of AGL27 declined as vernalization time increased. To determine BrAGL27′s functions, we obtained BrAGL27-overexpressed (OE) Arabidopsis thaliana lines that showed significantly later flowering compared with the wild type (WT). The expression levels of flowering suppressor genes AtFLC and AtTEM1 were significantly high-regulated in the BrAGL27-OE lines compared to WT plants, while the expression levels of the floral genes AtSPL15, AtSOC1, AtFT, and AtAP3 were significantly lower in the BrAGL27-overexpressed lines than in the wild type. These findings enhance understanding of MADS-box genes in vernalization and flowering regulation, offering a basis for further research on bolting resistance and flowering control in Chinese cabbage. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

Back to TopTop