Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,501)

Search Parameters:
Keywords = vertical device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1906 KB  
Communication
Multi-Walled Carbon Nanotube Growth on Fe/Al-Coated Thermally Stable Glass Substrates with Relevance to Field Emission
by Yung-Jui Huang, Guang-Yi Zeng, Lei Hu, Kuei-Yi Lee, Huan-Chun Wang and Pao-Hung Lin
Materials 2025, 18(17), 4028; https://doi.org/10.3390/ma18174028 - 28 Aug 2025
Viewed by 186
Abstract
The integration of vertically aligned carbon nanotubes (CNTs) onto glass substrates is a critical step toward realizing transparent and microfabrication-compatible electronic devices. The direct synthesis of patterned vertically aligned multi-walled CNTs (MWCNTs) on glass substrates using chemical vapor deposition (CVD) is demonstrated. Photolithographic [...] Read more.
The integration of vertically aligned carbon nanotubes (CNTs) onto glass substrates is a critical step toward realizing transparent and microfabrication-compatible electronic devices. The direct synthesis of patterned vertically aligned multi-walled CNTs (MWCNTs) on glass substrates using chemical vapor deposition (CVD) is demonstrated. Photolithographic patterning was employed prior to CNT growth to define the spatial geometry of the vertically aligned MWCNTs, enabling precise control over the emitter layout. A key factor influencing CNT morphology was found to be the thickness of the Al buffer layer. Among the tested thicknesses, an aluminum (Al) buffer layer with a thickness of 5 nm yielded optimal results. This configuration facilitates the growth of highly aligned MWCNTs with an average length of approximately 7 μm and a number density of about 109 cm−2. The patterned MWCNTs exhibit excellent vertical alignment and well-defined hexagonal geometries consistent with photolithographic designs. Field emission measurements further validate the material quality, with patterned vertically aligned MWCNTs demonstrating uniform emission and good temporal stability. These results establish a practical and scalable approach for growing patterned vertically aligned MWCNTs directly on thermally stable glass substrates, offering a promising platform for transparent field emission technologies and CNT-based microsystems. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

32 pages, 23491 KB  
Article
ANN-Assisted Numerical Study on Buoyant Heat Transfer of Hybrid Nanofluid in an Annular Chamber with Magnetic Field Inclination and Thermal Source–Sink Effects
by Mani Sankar, Maimouna S. Al Manthari, Praveen Kumar Poonia and Suresh Rasappan
Energies 2025, 18(17), 4543; https://doi.org/10.3390/en18174543 - 27 Aug 2025
Viewed by 200
Abstract
A significant challenge in thermal device designs across diverse industries is optimizing heat dissipation rates to enhance system performance. Among different geometric configurations, a partially heated–cooled annular system containing magneto-nanofluids presents unique complexities due to the curvature ratio and strategic positioning of thermal [...] Read more.
A significant challenge in thermal device designs across diverse industries is optimizing heat dissipation rates to enhance system performance. Among different geometric configurations, a partially heated–cooled annular system containing magneto-nanofluids presents unique complexities due to the curvature ratio and strategic positioning of thermal sources–sinks, which substantially influences flow dynamics and thermal transfer mechanisms. The present investigation examines the buoyancy-driven heat transfer in an annular cavity containing a hybrid nanofluid under the influence of an inclined magnetic field and thermal source–sink pairs. Five different thermal source–sink arrangements and a wide range of magnetic field orientations are considered. The governing equations are solved using a finite difference approach that combines the Alternating Direction Implicit (ADI) method with relaxation techniques to capture the flow and thermal characteristics. An artificial neural network (ANN) is trained using simulation data to estimate the average Nusselt number for a range of physical conditions. Among different source–sink arrangements, the Case-1 arrangement is found to produce a stronger flow circulation and thermal dissipation rates. Also, an oblique magnetic field offers greater control compared with vertical or horizontal magnetic orientations. The network, structured with multiple hidden layers and optimized using a conjugate gradient algorithm, produces predictions that closely match the numerical results. Our analysis reveals that Case-1 demonstrates superior thermal performance, with approximately 19% greater heat dissipation compared with other chosen heating configurations. In addition, the Case-1 heating configuration combined with blade-shaped nanoparticles yields more than 27% superior thermal performance among the considered configurations. The outcomes suggest that at stronger magnetic fields (Ha=50), the orientation angle becomes critically important, with perpendicular magnetic fields (γ=90) significantly outperforming other orientations. Full article
Show Figures

Figure 1

22 pages, 12949 KB  
Article
Accurate, Extended-Range Indoor Visible Light Positioning via High-Efficiency MPPM Modulation with Smartphone Multi-Sensor Fusion
by Dinh Quan Nguyen and Hoang Nam Nguyen
Photonics 2025, 12(9), 859; https://doi.org/10.3390/photonics12090859 - 27 Aug 2025
Viewed by 192
Abstract
Visible Light Positioning (VLP), leveraging Light-Emitting Diodes (LEDs) and smartphone CMOS cameras, provides a high-precision solution for indoor localization. However, existing systems face challenges in accuracy, latency, and robustness due to line-of-sight (LOS) limitations and inefficient signal encoding. To overcome these constraints, this [...] Read more.
Visible Light Positioning (VLP), leveraging Light-Emitting Diodes (LEDs) and smartphone CMOS cameras, provides a high-precision solution for indoor localization. However, existing systems face challenges in accuracy, latency, and robustness due to line-of-sight (LOS) limitations and inefficient signal encoding. To overcome these constraints, this paper introduces a real-time VLP framework that integrates Multi-Pulse Position Modulation (MPPM) with smartphone multi-sensor fusion. By employing MPPM, a high-efficiency encoding scheme, the proposed system transmits LED identifiers (LED-IDs) with reduced inter-symbol interference, enabling robust signal detection even under dynamic lighting conditions and at extended distances. The smartphone’s camera is a receiver that decodes the MPPM-encoded LED-ID, while accelerometer and magnetometer data compensate for device orientation and motion-induced errors. Experimental results demonstrate that the MPPM-driven approach achieves a decoding success rate of over 97% at distances up to 2.4 m, while maintaining a frame processing rate of 30 FPS and sub-35 ms latency. Furthermore, the method reduces angular errors through sensor fusion, yielding 2D positioning accuracy below 10 cm and vertical errors under 16 cm across diverse smartphone orientations. The synergy of MPPM’s spectral efficiency and multi-sensor correction establishes a new benchmark for VLP systems, enabling scalable deployment in real-world environments without requiring complex infrastructure. Full article
Show Figures

Graphical abstract

24 pages, 3575 KB  
Article
Simultaneously Estimating Process Variation Effect, Work Function Fluctuation, and Random Dopant Fluctuation of Gate-All-Around Silicon Nanosheet Complementary Field-Effect Transistors
by Sekhar Reddy Kola and Yiming Li
Nanomaterials 2025, 15(17), 1306; https://doi.org/10.3390/nano15171306 - 24 Aug 2025
Viewed by 278
Abstract
We systematically investigate the combined impact of process variation effects (PVEs), metal gate work function fluctuation (WKF), and random dopant fluctuation (RDF) on the key electrical characteristics of sub-1-nm technology node gate-all-around silicon nanosheet complementary field-effect transistors (GAA Si NS CFETs). Through comprehensive [...] Read more.
We systematically investigate the combined impact of process variation effects (PVEs), metal gate work function fluctuation (WKF), and random dopant fluctuation (RDF) on the key electrical characteristics of sub-1-nm technology node gate-all-around silicon nanosheet complementary field-effect transistors (GAA Si NS CFETs). Through comprehensive statistical analysis, we reveal that the interplay of these intrinsic and extrinsic sources of variability induces significant fluctuations in the off-state leakage current across both N-/P-FETs in GAA Si NS CFETs. The sensitivity to process-induced variability is found to be particularly pronounced in the P-FETs, primarily due to the enhanced parasitic conduction associated with the bottom nanosheet channel. Given the correlated nature of PVE, WKF, and RDF factors, the statistical sum (RSD) of the fluctuation for each factor is overestimated by less than 50% compared with the simultaneous fluctuations of PVE, WKF, and RDF factors. Furthermore, although the static power dissipation remains relatively small compared to dynamic and short-circuit power components, it exhibits the largest relative fluctuation (approximately 82.1%), posing critical challenges for low-power circuit applications. These findings provide valuable insights into the variability-aware design and optimization of GAA NS CFET device fabrication processes, as well as the development of robust and reliable CFET-based integrated circuits for next-generation technology nodes. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 4550 KB  
Article
Study on the Dynamic Response of a Heaving Buoy with an Accumulator-Integrated Hydraulic Power Take-Off System Under Dam-Break Flow Using a Modified Moving Particle Semi-Implicit Method
by Jun Wang, Zhaode Zhang and Date Li
J. Mar. Sci. Eng. 2025, 13(9), 1613; https://doi.org/10.3390/jmse13091613 - 23 Aug 2025
Viewed by 207
Abstract
The moving particle semi-implicit (MPS) method is employed to investigate the dynamic response of a wave energy converter (WEC) buoy subjected to dam-break flows. The buoy is connected to a hydraulic power take-off (PTO) system equipped with an accumulator, enabling it to capture [...] Read more.
The moving particle semi-implicit (MPS) method is employed to investigate the dynamic response of a wave energy converter (WEC) buoy subjected to dam-break flows. The buoy is connected to a hydraulic power take-off (PTO) system equipped with an accumulator, enabling it to capture wave energy. First, the MPS method is validated by comparison with experimental results, demonstrating its accuracy in simulating violent interactions between dam-break flows and the buoy. Subsequently, numerical simulations are conducted to analyze the influence of different PTO forces and buoy positions on the heave motion, fluid forces and captured power of the buoy. The results indicate that PTO force exerts a significant influence on heave motion, captured power and vertical fluid force while having a relatively minor effect on the horizontal fluid force. In addition, the maximum power that the buoy can capture increases as its distance from the wall decreases. Notably, the maximum average captured power of the buoy located near a wall can be five times higher than that of a buoy far away from the wall, indicating that a vertical wall can significantly increase the efficiency of nearshore WEC devices. These findings could provide valuable insights for the design, optimization and operation of nearshore WEC devices. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

21 pages, 6779 KB  
Article
Reinforcement Learning-Enabled Adaptive Control for Climate-Responsive Kinetic Building Facades
by Zhuorui Li, Jinzhao Tian, Guanzhou Ji, Tiffany Cheng, Vivian Loftness and Xu Han
Buildings 2025, 15(16), 2977; https://doi.org/10.3390/buildings15162977 - 21 Aug 2025
Viewed by 292
Abstract
As people spend most of their time indoors, the quality of the indoor lighting environment plays a crucial role in occupant health, mood, and productivity. While modern glazed curtain walls improve daylighting potential, they also heighten the risks of glare and associated solar [...] Read more.
As people spend most of their time indoors, the quality of the indoor lighting environment plays a crucial role in occupant health, mood, and productivity. While modern glazed curtain walls improve daylighting potential, they also heighten the risks of glare and associated solar heat gains that may result in occupant discomfort and overheating. To continuously ensure visual comfort while providing shading, kinetic responsive facades controlled by sensors and actuators can change the angles of the elements. Conventional control methods for shading devices mainly involve the unified control of each element. However, as each element of the kinetic responsive facade can be controlled independently, the number of potential control actions increases exponentially with the number of facade elements and possible angles. Traditional rule-based methods are challenging for handling this multi-objective high-dimensional control problem. This paper introduces a novel self-learning, real-time reinforcement learning (RL) controller that can interact with the environment to find a globally optimal control solution for each element in kinetic responsive facades, thereby meeting visual quality and shading goals. The configuration and workflow of the proposed RL controller are introduced and tested vertically, diagonally, and radially folding responsive facades. The results demonstrate that the proposed RL controller effectively maintains horizontal and vertical illuminance, with 72.92% of test points in occupied spaces falling within the defined comfort range. Additionally, it keeps the daylight glare probability (DGP) below 0.35, a level generally considered imperceptible. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 1733 KB  
Article
Synergistic Remote Sensing and In Situ Observations for Rapid Ocean Temperature Profile Forecasting on Edge Devices
by Jingpeng Shi, Yang Zhao and Fangjie Yu
Appl. Sci. 2025, 15(16), 9204; https://doi.org/10.3390/app15169204 - 21 Aug 2025
Viewed by 289
Abstract
Regional rapid forecasting of vertical ocean temperature profiles is increasingly important for marine aquaculture, as these profiles directly affect habitat management and the physiological responses of farmed species. However, observational temperature profile data with sufficient temporal resolution are often unavailable, limiting their use [...] Read more.
Regional rapid forecasting of vertical ocean temperature profiles is increasingly important for marine aquaculture, as these profiles directly affect habitat management and the physiological responses of farmed species. However, observational temperature profile data with sufficient temporal resolution are often unavailable, limiting their use in regional rapid forecasting. In addition, traditional numerical ocean models suffer from intensive computational demands and limited operational flexibility, making them unsuitable for regional rapid forecasting applications. To address this gap, we propose PICA-Net (Physics-Inspired CNN–Attention–BiLSTM Network), a hybrid deep learning model that coordinates large-scale satellite observations with local-scale, continuous in situ data to enhance predictive fidelity. The model also incorporates weak physical constraints during training that enforce temporal–spatial diffusion consistency, mixed-layer homogeneity, and surface heat flux consistency, enhancing physical consistency and interpretability. The model uses hourly historical inputs to predict temperature profiles at 6 h intervals over a period of 24 h, incorporating features such as sea surface temperature, sea surface height anomalies, wind fields, salinity, ocean currents, and net heat flux. Experimental results demonstrate that PICA-Net outperforms baseline models in terms of accuracy and generalization. Additionally, its lightweight design enables real-time deployment on edge devices, offering a viable solution for localized, on-site forecasting in smart aquaculture. Full article
Show Figures

Figure 1

16 pages, 3174 KB  
Article
Aeolian Saltation Flux Profiles: Comparison of Representation and Measurement Methods
by Douglas J. Sherman, Jinsu Bae, Jean T. Ellis, Christy Swann, Eric J. R. Parteli, Eugene Farrell, Bailiang Li, Ascânio Dias Araújo, Alexandre Medeiros de Carvalho, Diane L. Sherman and Pei Zhang
Geosciences 2025, 15(8), 323; https://doi.org/10.3390/geosciences15080323 - 19 Aug 2025
Viewed by 392
Abstract
Wind-blown sand concentrations decay rapidly and in an orderly manner with height above the surface. The saltation flux profiles are of interest to understand wind and sand interactions and for fundamental measurement and modeling of associated transport rates. This study compares methods to [...] Read more.
Wind-blown sand concentrations decay rapidly and in an orderly manner with height above the surface. The saltation flux profiles are of interest to understand wind and sand interactions and for fundamental measurement and modeling of associated transport rates. This study compares methods to measure and represent aeolian sand flux profiles. We measured vertical flux profiles and used quality-controlled data to test power, logarithmic, and exponential functions to reproduce the profiles. These results are used in a pragmatic assessment of the efficiency of reproducing flux profiles from vertically discontinuous arrays of traps or sensors compared to profiles obtained from continuous vertical arrays of segmented traps. Our analysis corroborates previous findings demonstrating that exponential decay functions are statistically the best method to approximate flux profiles. The results are used in a novel application to compare flux profiles reproduced from vertically discontinuous arrays of devices with those obtained from continuous vertical arrays comprising nine mesh-style traps. The results indicate that discontinuous arrays of 3, 4, 5, or 6 devices deployed less than 200 mm from the surface will effectively reproduce results from the continuous array, with average errors less than 3%. Errors increase when devices are at greater heights or as the number of devices decreases. Discontinuous arrays typically do not capture creep transport which would contribute to error in our comparisons. Therefore, creep must comprise less than 3% of total aeolian sand flux, contradicting typical assumptions of 25%. Full article
Show Figures

Figure 1

19 pages, 2963 KB  
Article
Theoretical Design of Composite Stratified Nanohole Arrays for High-Figure-of-Merit Plasmonic Hydrogen Sensors
by Jiyu Feng, Yuting Liu, Xinyi Chen, Mingyu Cheng and Bin Ai
Chemosensors 2025, 13(8), 309; https://doi.org/10.3390/chemosensors13080309 - 15 Aug 2025
Viewed by 330
Abstract
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here [...] Read more.
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here we employ full-wave finite-difference time-domain (FDTD) simulations to map the hydrogen response of nanohole arrays (NAs) that can be mass-produced by colloidal lithography. Square lattices of 200 nm holes etched into 100 nm films of Pd, Mg, Ti, V, or Zr expose an intrinsic trade-off: Pd maintains sharp extraordinary optical transmission modes but shifts by only 28 nm upon hydriding, whereas Mg undergoes a large dielectric transition that extinguishes its resonance. Vertical pairing of a hydride-forming layer with a noble metal plasmonic cap overcomes this limitation. A Mg/Pd bilayer preserves all modes and red-shifts by 94 nm, while the predicted optimum Ag (60 nm)/Mg (40 nm) stack delivers a 163 nm shift with an 83 nm linewidth, yielding a figure of merit of 1.96—surpassing the best plasmonic hydrogen sensors reported to date. Continuous-film geometry suppresses mechanical degradation, and the design rules—noble-metal plasmon generator, buried hydride layer, and thickness tuning—are general. This study charts a scalable route to remote, sub-ppm, optical hydrogen sensors compatible with a carbon-neutral energy infrastructure. Full article
(This article belongs to the Special Issue Innovative Gas Sensors: Development and Application)
Show Figures

Figure 1

9 pages, 3634 KB  
Article
Van Der Waals Mask-Assisted Strategy for Deterministic Fabrication of Two-Dimensional Organic−Inorganic Hybrid Perovskites Lateral Heterostructures
by Bin Han, Mengke Lin, Yanren Tang, Xingyu Liu, Bingtao Lian, Qi Qiu, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(8), 266; https://doi.org/10.3390/inorganics13080266 - 14 Aug 2025
Viewed by 353
Abstract
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van [...] Read more.
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van der Waals mask-assisted strategy for the deterministic fabrication of 2D OIHP lateral heterostructures. Mechanically exfoliated 2D materials such as graphene serve as removable masks that enable selective conversion of unmasked perovskite regions via ion exchange reaction. This technique enables the fabrication of various lateral heterostructures, such as BA2MA2Pb3I10/MAPbI3, PEAPbI4/MAPbI3, as well as BA2MAPb2I7/MAPbBr3. Furthermore, complex multiheterostructures and superlattices can be constructed through sequential masking and conversion processes. Moreover, to investigate the electronic properties and demonstrate potential device applications of the lateral heterostructures, we have fabricated an electrical diode based on a BA2MA2Pb3I10/MAPbI3 lateral heterostructure. Stable electrical rectifying behavior with a rectification ratio of around 10 was observed. This general and flexible approach provides a robust platform for constructing 2D OIHPs lateral heterostructures and opens new pathways for their integration into high-performance optoelectronic devices. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

20 pages, 1300 KB  
Article
Techno-Economic Analysis and Power Take-Off Optimization of a Wave Energy Converter Adjacent to a Vertical Seawall
by Senthil Kumar Natarajan and Il Hyoung Cho
Energies 2025, 18(16), 4246; https://doi.org/10.3390/en18164246 - 9 Aug 2025
Viewed by 364
Abstract
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic [...] Read more.
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic analysis and power take-off (PTO) optimization for a vertical cylindrical WEC positioned adjacent to a vertical seawall under irregular wave conditions. The PTO system is connected via frames and hinges, with one end connected to the vertical seawall and the other end to the arm extending to the oscillating WEC. Hydrodynamic parameters were obtained from WAMIT, incorporating the seawall effect via the image method using linear potential theory. This analysis considers variations in WEC diameter, the lengths of frame segments supporting the PTO system, and the PTO damping. First, the geometric configuration is optimized. The results show that placing the WEC closer to the seawall and positioning the hinge joint of the PTO frame at the midpoint of the actuating arm significantly enhances power extraction, due to intensified hydrodynamic interactions near the seawall. A techno-economic analysis is then conducted using two techno-economic metrics, with one representing device cost and the other a newly introduced metric for PTO cost, combined through the weighted sum model (WSM) within a multi-criteria decision analysis (MCDA) framework. Our findings indicate that a smaller-diameter WEC is more cost-effective within a narrow range of PTO damping, while larger WECs, although requiring higher PTO damping capacity, become more cost-effective at higher PTO damping values, due to increased power absorption. Optimal PTO damping values were identified for each diameter of the WEC, demonstrating the trade-off between power output and system cost. These findings provide practical guidance for optimizing nearshore WEC designs to achieve a balance between performance and cost. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

23 pages, 11533 KB  
Article
Study and Testing of a Front-Blowing and Rear-Suction Enhanced Cleaning Technology for Grain Combine Harvesters
by Jianning Yin, Yipeng Cui, Zehao Zha, Qiming Yu, Pengxuan Guan, Yang Wang, Xinxin Wang and Duanyang Geng
Agriculture 2025, 15(16), 1722; https://doi.org/10.3390/agriculture15161722 - 9 Aug 2025
Viewed by 351
Abstract
To address the issue in high-throughput longitudinal axial-flow grain combine harvester cleaning systems, in which the extended length of the cleaning chamber results in airflow velocity attenuation and makes it difficult to efficiently and rapidly remove light impurities, a front-blowing and rear-suction enhanced [...] Read more.
To address the issue in high-throughput longitudinal axial-flow grain combine harvester cleaning systems, in which the extended length of the cleaning chamber results in airflow velocity attenuation and makes it difficult to efficiently and rapidly remove light impurities, a front-blowing and rear-suction enhanced cleaning technology and device was developed. Based on the investigation of the movement characteristics of the cleaning airflow within the cleaning chamber, a theoretical model was established to describe the velocity variation of the front-blowing and rear-suction enhanced cleaning airflow. CFD simulation software was employed to conduct a comparative analysis of the airflow field structure before and after improvement, aiming to identify the influence patterns of key structural parameters on the airflow field distribution. An orthogonal experiment with three factors and three levels was conducted on the improved cleaning system, focusing on the suction fan speed, vertical installation height of the suction fan, and horizontal distance between the suction fan and the sieve surface. The influence of each factor on the airflow field was analyzed, and the optimal parameter combination was obtained. When the suction fan speed was 2275 r/min, the vertical installation height was 72.5 mm, the horizontal distance to the sieve surface was 385 mm, and the airflow non-uniformity coefficient at the rear part of the screen surface was 11.17%, with a relative error of 4.39% compared to the optimization result. Finally, bench tests were conducted to verify the accuracy of the simulation results. Compared to that before improvement, the airflow non-uniformity coefficient at the rear part of the screen surface in the cleaning chamber was reduced by 59.43%, significantly improving the uniformity of airflow distribution. These findings provide both theoretical and technical support for improving the cleaning efficiency and operational performance of high-throughput grain combine harvesters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 1302 KB  
Article
Fallskip® Parameters and Their Relationship with the Risk of Falls in Older Individuals with and Without Diabetes
by Azahar Castillo-Montesinos, Lorenzo Brognara, Alejandra Mafla-España and Omar Cauli
Geriatrics 2025, 10(4), 109; https://doi.org/10.3390/geriatrics10040109 - 8 Aug 2025
Viewed by 408
Abstract
Background/Objectives: the assessment and prevention of fall risk is an essential component of healthcare, particularly for vulnerable populations such as older adults with or without diabetes. The use of objective and validated tools to assess balance, gait, and other risk factors enables healthcare [...] Read more.
Background/Objectives: the assessment and prevention of fall risk is an essential component of healthcare, particularly for vulnerable populations such as older adults with or without diabetes. The use of objective and validated tools to assess balance, gait, and other risk factors enables healthcare professionals to make informed clinical decisions and design personalized prevention programs. An observational cross-sectional study was conducted with a probabilistic sample of older patients, with and without diabetes, attending a podiatric clinic (Valencia, Spain). Methods: fall risk was assessed using the Tinetti Scale and the FallSkip® device, which measures posture (i.e., medial-lateral and anterior-posterior displacements), gait (vertical and medial-lateral ranges), turn-to-sit (time) and sit-to-stand (power) tests, total time and gait reaction time. Results: the results showed a significant association between the values obtained with FallSkip® and the Tinetti Scale (p < 0.001), identifying the older individuals at high risk of falls. The “reaction time” parameter measured by FallSkip® showed a significant difference between diabetic and non-diabetic patients (p < 0.05), as well as the balance score assessed by the Tinetti Scale (p < 0.05). Having experienced falls in the previous year had a strong (p < 0.001) significant influence on the results evaluated using both the Tinetti Scale and FallSkip®. Among the FallSkip® parameters in the multivariate analysis, the ‘Total Time (%)’ parameter significantly (p < 0.01, Exp(B) = 0.974 (CI 95%: 0.961–0.988) discriminates individuals with or without falls in the previous year. Conclusions: this study supports the usefulness of the FallSkip® device as an objective, efficient, and easy-to-use tool for fall risk assessment in primary care settings. Full article
Show Figures

Figure 1

31 pages, 5417 KB  
Article
Design and Analysis of an Autonomous Active Ankle–Foot Prosthesis with 2-DoF
by Sayat Akhmejanov, Nursultan Zhetenbayev, Aidos Sultan, Algazy Zhauyt, Yerkebulan Nurgizat, Kassymbek Ozhikenov, Abu-Alim Ayazbay and Arman Uzbekbayev
Sensors 2025, 25(16), 4881; https://doi.org/10.3390/s25164881 - 8 Aug 2025
Viewed by 624
Abstract
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s [...] Read more.
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s gait. Unlike most commercial prostheses, which typically feature only one active degree of freedom, the proposed device combines a lightweight mechanical design, a screw drive with a stepper motor, and a microcontroller-based control system. The prototype was developed using CAD modeling in SolidWorks 2024, followed by dynamic modeling and finite element analysis (FEA). The simulation results confirmed the achievement of physiological angular ranges of ±20–22 deg. in both planes, with stable kinematic behavior and minimal vertical displacements. According to the FEA data, the maximum von Mises stress (1.49 × 108 N/m2) and deformation values remained within elastic limits under typical loading conditions, though cyclic fatigue and impact energy absorption were not experimentally validated and are planned for future work. The safety factor was estimated at ~3.3, indicating structural robustness. While sensor feedback and motor dynamics were idealized in the simulation, future work will address real-time uncertainties such as sensor noise and ground contact variability. The developed design enables precise, energy-efficient, and adaptive motion control, with an estimated average power consumption in the range of 7–9 W and an operational runtime exceeding 3 h per charge using a standard 18,650 cell pack. These results highlight the system’s potential for real-world locomotion on uneven surfaces. This research contributes to the advancement of affordable and functionally autonomous prostheses for individuals with transtibial amputation. Full article
(This article belongs to the Special Issue Recent Advances in Sensor Technology and Robotics Integration)
Show Figures

Figure 1

16 pages, 3174 KB  
Article
Efficient Particle Aggregation Through SSAW Phase Modulation
by Yiming Li, Zekai Li, Zuozhi Wei, Yiran Wang, Xudong Niu and Dongfang Liang
Micromachines 2025, 16(8), 910; https://doi.org/10.3390/mi16080910 - 5 Aug 2025
Viewed by 401
Abstract
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and [...] Read more.
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel. By fully exploiting the degrees of freedom offered by two pairs of interdigital transducers (IDTs) on each substrate, the system enables highly flexible control of microparticles. To explore its capability on particle aggregation, we developed a two-dimensional numerical model to investigate the influence of the SAW phase modulation on the established acoustic fields within the microchannel. Single-particle motion was first examined under the influence of the phase-modulated acoustic fields to form a reference for identifying effective phase modulation strategies. Key parameters, such as the phase changes and the duration of each phase modulation step, were determined to maximize the lateral motion while minimizing undesired vertical motion of the particle. Our dual-sided SSAW configuration, combined with novel dynamic phase modulation strategy, leads to rapid and precise aggregation of microparticles towards a single focal point. This study sheds new light on the design of acoustofluidic devices for efficient spatiotemporal particle concentration. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

Back to TopTop