Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = vessel trajectory data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 17561 KB  
Article
Multidimensional Maritime Route Modeling Method for Complex Port Waters Considering Ship Handling Behavior Diversity
by Junmei Ou, Shuangxin Wang, Jingyi Liu, Hongrui Li, Wenyu Zhao and Chenglong Jiang
J. Mar. Sci. Eng. 2025, 13(10), 1963; https://doi.org/10.3390/jmse13101963 (registering DOI) - 14 Oct 2025
Abstract
The sea area adjacent to ports features a dense network of intricate access routes. Existing route modeling methods exhibit limitations in accurately capturing these complex routes and effectively representing the diverse handling behavior patterns of ships within them. To address this issue, this [...] Read more.
The sea area adjacent to ports features a dense network of intricate access routes. Existing route modeling methods exhibit limitations in accurately capturing these complex routes and effectively representing the diverse handling behavior patterns of ships within them. To address this issue, this paper proposes a maritime route modeling method incorporating ship handling behavior (MARSHB) to accurately identify port channels with diverse traffic flows and enabling a multi-dimensional model of heterogeneous vessel behaviors along these channels. Numerical experiments using extensive automatic identification system (AIS) data from the Bohai Sea show that the proposed method reduces the computational time by 49.75% for route extraction compared to the traditional method. For route modeling, MARSHB covers 88.31% of 95% high-density traffic areas, with safety boundaries exhibiting a higher accuracy of conformity with historical trajectory data. Full article
(This article belongs to the Section Ocean Engineering)
35 pages, 7130 KB  
Article
A Hybrid Framework Integrating End-to-End Deep Learning with Bayesian Inference for Maritime Navigation Risk Prediction
by Fanyu Zhou and Shengzheng Wang
J. Mar. Sci. Eng. 2025, 13(10), 1925; https://doi.org/10.3390/jmse13101925 - 9 Oct 2025
Viewed by 321
Abstract
Currently, maritime navigation safety risks—particularly those related to ship navigation—are primarily assessed through traditional rule-based methods and expert experience. However, such approaches often suffer from limited accuracy and lack real-time responsiveness. As maritime environments and operational conditions become increasingly complex, traditional techniques struggle [...] Read more.
Currently, maritime navigation safety risks—particularly those related to ship navigation—are primarily assessed through traditional rule-based methods and expert experience. However, such approaches often suffer from limited accuracy and lack real-time responsiveness. As maritime environments and operational conditions become increasingly complex, traditional techniques struggle to cope with the diversity and uncertainty of navigation scenarios. Therefore, there is an urgent need for a more intelligent and precise risk prediction method. This study proposes a ship risk prediction framework that integrates a deep learning model based on Long Short-Term Memory (LSTM) networks with Bayesian risk evaluation. The model first leverages deep neural networks to process time-series trajectory data, enabling accurate prediction of a vessel’s future positions and navigational status. Then, Bayesian inference is applied to quantitatively assess potential risks of collision and grounding by incorporating vessel motion data, environmental conditions, surrounding obstacles, and water depth information. The proposed framework combines the advantages of deep learning and Bayesian reasoning to improve the accuracy and timeliness of risk prediction. By providing real-time warnings and decision-making support, this model offers a novel solution for maritime safety management. Accurate risk forecasts enable ship crews to take precautionary measures in advance, effectively reducing the occurrence of maritime accidents. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

40 pages, 1778 KB  
Review
Smart Routing for Sustainable Shipping: A Review of Trajectory Optimization Approaches in Waterborne Transport
by Yevgeniy Kalinichenko, Sergey Rudenko, Andrii Holovan, Nadiia Vasalatii, Anastasiia Zaiets, Oleksandr Koliesnik, Leonid Oberto Santana and Nataliia Dolynska
Sustainability 2025, 17(18), 8466; https://doi.org/10.3390/su17188466 - 21 Sep 2025
Viewed by 897
Abstract
Smart routing has emerged as a critical enabler of sustainable shipping, addressing the growing demand for energy-efficient, safe, and adaptive vessel navigation in both maritime and inland waterborne transport. This review examines the current landscape of trajectory optimization approaches by analyzing selected peer-reviewed [...] Read more.
Smart routing has emerged as a critical enabler of sustainable shipping, addressing the growing demand for energy-efficient, safe, and adaptive vessel navigation in both maritime and inland waterborne transport. This review examines the current landscape of trajectory optimization approaches by analyzing selected peer-reviewed studies and categorizing them into six thematic areas: AI/ML-based prediction, optimization and path planning algorithms, data-driven methods using AIS and GIS, weather routing and environmental modeling, digital platforms and decision support systems, and hybrid or rule-based frameworks for autonomous navigation. The analysis highlights recent advances in deep learning for trajectory forecasting, multi-objective and heuristic optimization techniques, and the use of real-time environmental data in routing decisions. Supplemental review using Scopus-based topic mapping confirms the centrality of integrated digital strategies, high-performance computing, and physics-informed modeling in emerging research. Despite notable progress, the field remains fragmented, with limited real-time integration, underexplored regulatory alignment, and a lack of explainable AI applications. The review concludes by outlining future directions, including the development of hybrid and interpretable optimization frameworks, and expanding research tailored to inland navigation with its distinct operational challenges. These insights aim to support the design of next-generation navigation systems that are robust, intelligent, and environmentally compliant. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

25 pages, 3411 KB  
Article
Evaluation of Ship Importance in Offshore Wind Farm Area Based on Fusion Gravity Model in Complex Network
by Jian Liu, Keteng Ke, Shimin Yang, Chuang Yang, Zhongyi Sui, Chunhui Zhou and Lichuan Wu
Sustainability 2025, 17(18), 8252; https://doi.org/10.3390/su17188252 - 14 Sep 2025
Viewed by 374
Abstract
With the rapid expansion of offshore wind farms (OWFs), ensuring maritime safety in adjacent waters has become an increasingly critical challenge. This study proposes an innovative dynamic risk assessment method that integrates a fusion gravity model into a complex network framework to comprehensively [...] Read more.
With the rapid expansion of offshore wind farms (OWFs), ensuring maritime safety in adjacent waters has become an increasingly critical challenge. This study proposes an innovative dynamic risk assessment method that integrates a fusion gravity model into a complex network framework to comprehensively evaluate ship importance in OWF areas. By treating ships and wind farms as network nodes and modeling their interactions using AIS data, the method effectively captures spatiotemporal traffic dynamics and precisely quantifies ship importance. Multiple network indicators, including centrality, clustering coefficient, and vertex strength, are fused to comprehensively assess node criticality. A case study in the Yangtze River Estuary empirically demonstrates that ship importance is not static but dynamically and significantly changes with trajectories, interactions with other vessels, and proximity to OWFs, successfully identifying high-risk ships and sensitive OWF areas. The contribution of this research lies in providing a data-driven, quantifiable, novel framework capable of real-time identification of potential threats in maritime traffic. This approach offers direct and practical insights for traffic control, early warning system development, and optimizing maritime traffic management policies, facilitating a shift from reactive response to proactive prevention. Ultimately, it enhances safety supervision efficiency and decision-making support in complex maritime environments, safeguarding the sustainable development of the offshore wind industry. Full article
Show Figures

Figure 1

26 pages, 24511 KB  
Article
VTLLM: A Vessel Trajectory Prediction Approach Based on Large Language Models
by Ye Liu, Wei Xiong, Nanyu Chen and Fei Yang
J. Mar. Sci. Eng. 2025, 13(9), 1758; https://doi.org/10.3390/jmse13091758 - 11 Sep 2025
Viewed by 598
Abstract
In light of the rapid expansion of maritime trade, the maritime transportation industry has experienced burgeoning growth and complexity. The deployment of trajectory prediction technology is paramount in safeguarding navigational safety. Due to limitations in design complexity and the high costs of data [...] Read more.
In light of the rapid expansion of maritime trade, the maritime transportation industry has experienced burgeoning growth and complexity. The deployment of trajectory prediction technology is paramount in safeguarding navigational safety. Due to limitations in design complexity and the high costs of data fusion, current deep learning methods struggle to effectively integrate high-level semantic cues, such as vessel type, geographical identifiers, and navigational states, within predictive frameworks. Yet, these data contain abundant information regarding vessel categories or operational scenarios. Inspired by the robust semantic comprehension exhibited by large language models (LLMs) in natural language processing, this study introduces a trajectory prediction method leveraging LLMs. Initially, Automatic Identification System (AIS) data undergoes processing to eliminate incomplete entries, thereby selecting trajectories of high quality. Distinct from prior research that concentrated solely on vessel position and velocity, this study integrates ship identity, spatiotemporal trajectory, and navigational information through prompt engineering, empowering the LLM to extract multidimensional semantic features of trajectories from comprehensive natural language narratives. Thus, the LLM can amalgamate multi-source semantics with zero marginal cost, significantly enhancing its understanding of complex maritime environments. Subsequently, a supervised fine-tuning approach rooted in Low-Rank Adaptation (LoRA) is applied to train the chosen LLMs. This enables rapid adaptation of the LLM to specific maritime areas or vessel classifications by modifying only a limited subset of parameters, thereby appreciably diminishing both data requirements and computational costs. Finally, representative metrics are utilized to evaluate the efficacy of the model training and to benchmark its performance against prevailing advanced models for ship trajectory prediction. The results indicate that the model demonstrates notable performance in short-term predictions fFor instance, with a prediction step of 1 h, the average distance errors for VTLLM and TrAISformer are 5.26 nmi and 6.12 nmi, respectively, resulting in a performance improvement of approximately 14.05%), having identified certain patterns and features, such as linear movements and turns, from the training data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 1960 KB  
Article
Quantification and Analysis of Lung Involvement by Artificial Intelligence in Patients with Progressive Pulmonary Fibrosis Treated with Nintedanib
by Caterina Battaglia, Corrado Pelaia, Chiara Lupia, Alessia Mondelli, Francesco Turco, Paolo Zaffino, Carlo Cosentino, Francesco Manti, Giuliana Conti, Nicola Montenegro, Antonio Maiorano, Girolamo Pelaia, Pasquale Romeo and Domenico Laganà
Medicina 2025, 61(9), 1646; https://doi.org/10.3390/medicina61091646 - 11 Sep 2025
Viewed by 425
Abstract
Background and Objectives: Progressive pulmonary fibrosis (PPF) presents significant clinical challenges due to irreversible lung damage and declining respiratory function. Nintedanib has demonstrated antifibrotic effects, yet there is a lack of sensitive tools to assess treatment efficacy quantitatively. This study evaluated the potential [...] Read more.
Background and Objectives: Progressive pulmonary fibrosis (PPF) presents significant clinical challenges due to irreversible lung damage and declining respiratory function. Nintedanib has demonstrated antifibrotic effects, yet there is a lack of sensitive tools to assess treatment efficacy quantitatively. This study evaluated the potential of artificial intelligence (AI)-powered quantitative computed tomography (QCT) to monitor lung changes and predict treatment outcomes in patients with PPF undergoing nintedanib therapy. Materials and Methods: This retrospective study analysed 37 patients diagnosed with PPF who were treated with nintedanib for one year. AI-powered QCT was performed using the 3D Slicer software version 5.2.2, which quantified lung infiltration, collapse, and vessel volumes. These data were then correlated with pulmonary function tests. Receiver operating characteristic (ROC) analysis was used to assess baseline AI-powered QCT predictors for progression. Results: AI-powered QCT demonstrated a significant reduction in post-treatment right lung infiltration (5.56 ± 3.08 cm3 to 4.88 ± 2.77 cm3, p = 0.041), whereas total lung infiltration decreased non-significantly. Functional parameters, including forced vital capacity (FVC) and diffusion capacity for carbon monoxide (DLCO), showed no significant changes. ROC analysis identified a baseline infiltrated lung volume greater than 21.90% as predictive of continued disease progression (AUC = 0.767; sensitivity, 91.70%; specificity, 68.00%). Conclusions: AI-powered QCT identified diverse parenchymal responses to nintedanib in PPF and showed preliminary prognostic value for clinical trajectory. Imaging biomarkers enhance functional measures and may reveal early treatment effects. Prospective, multicentre validation is necessary to confirm usefulness and establish actionable thresholds for clinical application. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

23 pages, 1804 KB  
Article
Automatic Algorithm-Aided Segmentation of Retinal Nerve Fibers Using Fundus Photographs
by Diego Luján Villarreal
J. Imaging 2025, 11(9), 294; https://doi.org/10.3390/jimaging11090294 - 28 Aug 2025
Viewed by 749
Abstract
This work presents an image processing algorithm for the segmentation of the personalized mapping of retinal nerve fiber layer (RNFL) bundle trajectories in the human retina. To segment RNFL bundles, preprocessing steps were used for noise reduction and illumination correction. Blood vessels were [...] Read more.
This work presents an image processing algorithm for the segmentation of the personalized mapping of retinal nerve fiber layer (RNFL) bundle trajectories in the human retina. To segment RNFL bundles, preprocessing steps were used for noise reduction and illumination correction. Blood vessels were removed. The image was fed to a maximum–minimum modulation algorithm to isolate retinal nerve fiber (RNF) segments. A modified Garway-Heath map categorizes RNF orientation, assuming designated sets of orientation angles for aligning RNFs direction. Bezier curves fit RNFs from the center of the optic disk (OD) to their corresponding end. Fundus images from five different databases (n = 300) were tested, with 277 healthy normal subjects and 33 classified as diabetic without any sign of diabetic retinopathy. The algorithm successfully traced fiber trajectories per fundus across all regions identified by the Garway-Heath map. The resulting trace images were compared to the Jansonius map, reaching an average efficiency of 97.44% and working well with those of low resolution. The average mean difference in orientation angles of the included images was 11.01 ± 1.25 and the average RMSE was 13.82 ± 1.55. A 24-2 visual field (VF) grid pattern was overlaid onto the fundus to relate the VF test points to the intersection of RNFL bundles and their entry angles into the OD. The mean standard deviation (95% limit) obtained 13.5° (median 14.01°), ranging from less than 1° to 28.4° for 50 out of 52 VF locations. The influence of optic parameters was explored using multiple linear regression. Average angle trajectories in the papillomacular region were significantly influenced (p < 0.00001) by the latitudinal optic disk position and disk–fovea angle. Given the basic biometric ground truth data (only fovea and OD centers) that is publicly accessible, the algorithm can be customized to individual eyes and distinguish fibers with accuracy by considering unique anatomical features. Full article
(This article belongs to the Special Issue Progress and Challenges in Biomedical Image Analysis—2nd Edition)
Show Figures

Figure 1

24 pages, 1651 KB  
Article
Attentive Neural Processes for Few-Shot Learning Anomaly-Based Vessel Localization Using Magnetic Sensor Data
by Luis Fernando Fernández-Salvador, Borja Vilallonga Tejela, Alejandro Almodóvar, Juan Parras and Santiago Zazo
J. Mar. Sci. Eng. 2025, 13(9), 1627; https://doi.org/10.3390/jmse13091627 - 26 Aug 2025
Viewed by 696
Abstract
Underwater vessel localization using passive magnetic anomaly sensing is a challenging problem due to the variability in vessel magnetic signatures and operational conditions. Data-based approaches may fail to generalize even to slightly different conditions. Thus, we propose an Attentive Neural Process (ANP) approach, [...] Read more.
Underwater vessel localization using passive magnetic anomaly sensing is a challenging problem due to the variability in vessel magnetic signatures and operational conditions. Data-based approaches may fail to generalize even to slightly different conditions. Thus, we propose an Attentive Neural Process (ANP) approach, in order to take advantage of its few-shot capabilities to generalize, for robust localization of underwater vessels based on magnetic anomaly measurements. Our ANP models the mapping from multi-sensor magnetic readings to position as a stochastic function: it cross-attends to a variable-size set of context points and fuses these with a global latent code that captures trajectory-level factors. The decoder outputs a Gaussian over coordinates, providing both point estimates and well-calibrated predictive variance. We validate our approach using a comprehensive dataset of magnetic disturbance fields, covering 64 distinct vessel configurations (combinations of varying hull sizes, submersion depths (water-column height over a seabed array), and total numbers of available sensors). Six magnetometer sensors in a fixed circular arrangement record the magnetic field perturbations as a vessel traverses sinusoidal trajectories. We compare the ANP against baseline multilayer perceptron (MLP) models: (1) base MLPs trained separately on each vessel configuration, and (2) a domain-randomized search (DRS) MLP trained on the aggregate of all configurations to evaluate generalization across domains. The results demonstrate that the ANP achieves superior generalization to new vessel conditions, matching the accuracy of configuration-specific MLPs while providing well-calibrated uncertainty quantification. This uncertainty-aware prediction capability is crucial for real-world deployments, as it can inform adaptive sensing and decision-making. Across various in-distribution scenarios, the ANP halves the mean absolute error versus a domain-randomized MLP (0.43 m vs. 0.84 m). The model is even able to generalize to out-of-distribution data, which means that our approach has the potential to facilitate transferability from offline training to real-world conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1034 KB  
Article
Navigating the Future: A Novel PCA-Driven Layered Attention Approach for Vessel Trajectory Prediction with Encoder–Decoder Models
by Fusun Er and Yıldıray Yalman
Appl. Sci. 2025, 15(16), 8953; https://doi.org/10.3390/app15168953 - 14 Aug 2025
Viewed by 506
Abstract
This study introduces a novel deep learning architecture for vessel trajectory prediction based on Automatic Identification System (AIS) data. The motivation stems from the increasing importance of maritime transport and the need for intelligent solutions to enhance safety and efficiency in congested waterways—particularly [...] Read more.
This study introduces a novel deep learning architecture for vessel trajectory prediction based on Automatic Identification System (AIS) data. The motivation stems from the increasing importance of maritime transport and the need for intelligent solutions to enhance safety and efficiency in congested waterways—particularly with respect to collision avoidance and real-time traffic management. Special emphasis is placed on river navigation scenarios that limit maneuverability with the demand of higher forecasting precision than open-sea navigation. To address these challenges, we propose a Principal Component Analysis (PCA)-driven layered attention mechanism integrated within an encoder–decoder model to reduce redundancy and enhance the representation of spatiotemporal features, allowing the layered attention modules to focus more effectively on salient positional and movement patterns across multiple time steps. This dual-level integration offers a deeper contextual understanding of vessel dynamics. A carefully designed evaluation framework with statistical hypothesis testing demonstrates the superiority of the proposed approach. The model achieved a mean positional error of 0.0171 nautical miles (SD: 0.0035), with a minimum error of 0.0006 nautical miles, outperforming existing benchmarks. These results confirm that our PCA-enhanced attention mechanism significantly reduces prediction errors, offering a promising pathway toward safer and smarter maritime navigation, particularly in traffic-critical riverine systems. While the current evaluation focuses on short-term horizons in a single river section, the methodology can be extended to complex environments such as congested ports or multi-ship interactions and to medium-term or long-term forecasting to further enhance operational applicability and generalizability. Full article
Show Figures

Figure 1

24 pages, 3729 KB  
Article
Multi-Source Heterogeneous Data Fusion Algorithm for Vessel Trajectories in Canal Scenarios
by Jiayu Zhang, Mei Wang, Ruixiang Kan and Zihang Xiong
Electronics 2025, 14(16), 3223; https://doi.org/10.3390/electronics14163223 - 14 Aug 2025
Viewed by 619
Abstract
With the globalization of trade, maritime transport is playing an increasingly strategic role in sustaining international commerce. As a result, research into the tracking and fusion of multi-source vessel data in canal environments has become critical for enhancing maritime situational awareness. In the [...] Read more.
With the globalization of trade, maritime transport is playing an increasingly strategic role in sustaining international commerce. As a result, research into the tracking and fusion of multi-source vessel data in canal environments has become critical for enhancing maritime situational awareness. In the existing research and development, the heterogeneity of and variability in vessel flow data often lead to multiple issues in tracking algorithms, as well as in subsequent trajectory-matching processes. The existing tracking and matching frameworks typically suffer from three major limitations: insufficient capacity to extract fine-grained features from multi-source data; difficulty in balancing global context with local dynamics during multi-scale feature tracking; and an inadequate ability to model long-range temporal dependencies in trajectory matching. To address these challenges, this study proposes the Shape Similarity and Generalized Distance Adjustment (SSGDA) framework, a novel vessel trajectory-matching approach designed to track and associate multi-source heterogeneous vessel data in complex canal environments. The primary contributions of this work are summarized as follows: (1) an enhanced optimization strategy for trajectory fusion based on Enhanced Particle Swarm Optimization (E-PSO) designed for the proposed trajectory-matching framework; (2) the proposal of a trajectory similarity measurement method utilizing a distance-based reward–penalty mechanism, followed by empirical validation using the publicly available FVessel dataset. Comprehensive aggregation and analysis of the experimental results demonstrate that the proposed SSGDA method achieved a matching precision of 96.30%, outperforming all comparative approaches. Additionally, the proposed method reduced the mean-squared error between trajectory points by 97.82 pixel units. These findings further highlight the strong research potential and practical applicability of the proposed framework in real-world canal scenarios. Full article
Show Figures

Figure 1

17 pages, 1455 KB  
Article
STID-Mixer: A Lightweight Spatio-Temporal Modeling Framework for AIS-Based Vessel Trajectory Prediction
by Leiyu Wang, Jian Zhang, Guangyin Jin and Xinyu Dong
Eng 2025, 6(8), 184; https://doi.org/10.3390/eng6080184 - 3 Aug 2025
Viewed by 583
Abstract
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and [...] Read more.
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and irregular sampling intervals, while vessel trajectories are characterized by strong spatial–temporal dependencies. These factors pose significant challenges for efficient and accurate modeling. To address this issue, we propose a lightweight vessel trajectory prediction framework that integrates Spatial–Temporal Identity encoding with an MLP-Mixer architecture. The framework discretizes spatial and temporal features into structured IDs and uses dual MLP modules to model temporal dependencies and feature interactions without relying on convolution or attention mechanisms. Experiments on a large-scale real-world AIS dataset demonstrate that the proposed STID-Mixer achieves superior accuracy, training efficiency, and generalization capability compared to representative baseline models. The method offers a compact and deployable solution for large-scale maritime trajectory modeling. Full article
Show Figures

Figure 1

21 pages, 5017 KB  
Article
Vessel Trajectory Prediction with Deep Learning: Temporal Modeling and Operational Implications
by Nicos Evmides, Michalis P. Michaelides and Herodotos Herodotou
J. Mar. Sci. Eng. 2025, 13(8), 1439; https://doi.org/10.3390/jmse13081439 - 28 Jul 2025
Viewed by 968
Abstract
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a [...] Read more.
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a focus on understanding the temporal behavior of deep learning models under different input and prediction horizons. To this end, a robust data pre-processing pipeline was developed to ensure temporal consistency, filter anomalous records, and segment continuous vessel trajectories. Using a curated dataset from the eastern Mediterranean, three deep recurrent neural network architectures, namely LSTM, Bi-LSTM, and Bi-GRU, were evaluated for short- and long-term trajectory prediction. Empirical results demonstrate that Bi-LSTM consistently achieves higher accuracy across both horizons, with performance gradually degrading under extended forecast windows. The analysis also reveals key insights into the trade-offs between model complexity, horizon-specific robustness, and predictive stability. This work contributes to maritime informatics by offering a comparative evaluation of recurrent architectures and providing a structured and empirical foundation for selecting and deploying trajectory forecasting models in operational contexts. Full article
(This article belongs to the Special Issue Maritime Transport and Port Management)
Show Figures

Figure 1

22 pages, 2586 KB  
Article
Model Predictive Control for Autonomous Ship Navigation with COLREG Compliance and Chart-Based Path Planning
by Primož Potočnik
J. Mar. Sci. Eng. 2025, 13(7), 1246; https://doi.org/10.3390/jmse13071246 - 28 Jun 2025
Viewed by 1529
Abstract
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach [...] Read more.
Autonomous ship navigation systems must ensure safe and efficient route planning while complying with the International Regulations for Preventing Collisions at Sea (COLREGs). This paper presents an integrated navigation framework that combines chart-based global path planning with a Model Predictive Control (MPC) approach for local trajectory tracking and COLREG-compliant collision avoidance. The method generates feasible reference routes using maritime charts and predefined waypoints, while the MPC controller ensures precise path following and dynamic re-planning in response to nearby vessels and coastal obstacles. Coastal features and shorelines are modeled using Global Self-consistent, Hierarchical, High-resolution Geography data, enabling MPC to treat landmasses as static obstacles. Other vessels are represented as dynamic obstacles with varying speeds and headings, and COLREG rules are embedded within the MPC framework to enable rule-compliant maneuvering during encounters. To address real-time computational constraints, a simplified MPC formulation is introduced, balancing predictive accuracy with computational efficiency, making the approach suitable for embedded implementations. The navigation framework is implemented in a MATLAB-based simulation with real-time visualization supporting multi-vessel scenarios and COLREG-aware vessel interactions. Simulation results demonstrate robust performance across diverse maritime scenarios—including complex multi-ship encounters and constrained coastal navigation—while maintaining the shortest safe routes. By seamlessly integrating chart-aware path planning with COLREG-compliant, MPC-based collision avoidance, the proposed framework offers an effective, scalable, and robust solution for autonomous maritime navigation. Full article
Show Figures

Figure 1

19 pages, 4911 KB  
Article
A Novel Trajectory Repairing Model Based on the Artificial Potential Field-Enhanced A* Algorithm for Small Coastal Vessels
by Chengqiang Yu, Zhonglian Jiang, Xinliang Zhang, Wei He and Cheng Zhong
J. Mar. Sci. Eng. 2025, 13(7), 1200; https://doi.org/10.3390/jmse13071200 - 20 Jun 2025
Cited by 1 | Viewed by 485
Abstract
High-completeness ship trajectory data are critical for analyzing navigation behavior characteristics and enhancing effective maritime management. To address the common issues of prolonged AIS data loss for small coastal vessels in nearshore waters, an intelligent trajectory repairing model based on the artificial potential [...] Read more.
High-completeness ship trajectory data are critical for analyzing navigation behavior characteristics and enhancing effective maritime management. To address the common issues of prolonged AIS data loss for small coastal vessels in nearshore waters, an intelligent trajectory repairing model based on the artificial potential field-enhanced A* algorithm (APF-A*) has been proposed. Kernel density estimation was utilized to quantify the distribution characteristics of vessels, thereby constructing an attractive potential field based on historical trajectories and a repulsive potential field based on coastal terrain. Speed distribution characteristics were extracted from historical trajectory points in different regions; on the basis of this, the A* algorithm, integrated with attractive and repulsive fields, was proposed to repair missing trajectory segments. Based on the speed distribution characteristics, time intervals, and distance information, the temporal information of the vessel trajectories was effectively reconstructed. The present study fills the research gap in AIS data reconstruction for small coastal vessels in complex coastal waters. A case study has been conducted in Luoyuan Bay, Fujian Province, China, to further validate the proposed model. The results demonstrate that the trajectory repairing model based on the artificial potential field-enhanced A* algorithm outperformed other models. More specifically, the Hausdorff Distance and Dynamic Time Warping (DTW) metrics decreased by 81.67% and 91.56%, respectively. The present study shares useful insights into intelligent maritime management and further supports accident prevention in coastal waters. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 4445 KB  
Article
Link Availability-Aware Routing Metric Design for Maritime Mobile Ad Hoc Network
by Shuaiheng Huai, Tianrui Liu, Yi Jiang, Yanpeng Dai, Feng Xue and Qing Hu
J. Mar. Sci. Eng. 2025, 13(6), 1184; https://doi.org/10.3390/jmse13061184 - 17 Jun 2025
Cited by 1 | Viewed by 882
Abstract
A maritime mobile ad hoc network (M-MANET) is an essential part of the maritime communication network and plays a key role in many maritime scenarios. However, the topology of M-MANET dynamically changes with the movement of vessels, which leads to unstable link states [...] Read more.
A maritime mobile ad hoc network (M-MANET) is an essential part of the maritime communication network and plays a key role in many maritime scenarios. However, the topology of M-MANET dynamically changes with the movement of vessels, which leads to unstable link states and poses the risk of data transmission interruption. In this paper, a mobility model for small unmanned surface vessels based on smooth Gaussian semi-Markovian and a trajectory prediction method for large vessels based on a bi-directional long short-term memory network are proposed to better simulate the nodes’ movement in the M-MANET. Then, a link available based routing metric is proposed for M-MANET scenarios, which incorporates factors of mobility model and vessel trajectory. Experiments demonstrate that compared with the benchmark methods, the proposed mobility model depicts the movement characteristics of vessels more accurately, the proposed trajectory prediction method achieves higher prediction accuracy and stability, the proposed routing metric scheme has a reduction of 14.59% in end-to-end delay, a 1.54% increase in packet delivery fraction, and a 4.43% increase in network throughput on average. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

Back to TopTop