Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,231)

Search Parameters:
Keywords = vibration control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9140 KiB  
Article
Synchronized Carrier-Wave and High-Frequency Square-Wave Periodic Modulation Strategy for Acoustic Noise Reduction in Sensorless PMSM Drives
by Wentao Zhang, Sizhe Cheng, Pengcheng Zhu, Yiwei Liu and Jiming Zou
Energies 2025, 18(11), 2729; https://doi.org/10.3390/en18112729 - 24 May 2025
Abstract
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency [...] Read more.
High-frequency injection (HFI) is widely adopted for the sensorless control of permanent magnet synchronous motors (PMSMs) at low speeds. However, conventional HFI strategies relying on fixed-frequency carrier modulation and square-wave injection concentrate current harmonic energy within narrow spectral bands, thereby inducing pronounced high-frequency motor vibrations and noise. To mitigate this issue, this paper proposes a noise suppression strategy based on synchronized periodic frequency modulation (PFM) of both the carrier and high-frequency square-wave signals. By innovatively synchronizing the periodic modulation of the triangular carrier in space vector pulse width modulation (SVPWM) with the injected high-frequency square wave, harmonic energy dispersion and noise reduction are achieved, substantially lowering peak acoustic emissions. First, the harmonic characteristics of the voltage-source inverter output under symmetric triangular carrier SVPWM are analyzed within a sawtooth-wave PFM framework. Concurrently, a harmonic current model is developed for the high-frequency square-wave injection method, enabling the precise derivation of harmonic components. A frequency-synchronized modulation strategy between the carrier and injection signals is proposed, with a rigorous analysis of its harmonic suppression mechanism. The rotor position is then estimated via high-frequency signal extraction and a normalized phase-locked loop (PLL). Comparative simulations and experiments confirm significant noise peak attenuation compared to conventional methods, while position estimation accuracy remains unaffected. This work provides both theoretical and practical advancements for noise-sensitive sensorless motor control applications. Full article
(This article belongs to the Special Issue Advances in Control of Electrical Drives and Power Electronics)
Show Figures

Figure 1

26 pages, 17515 KiB  
Article
Research on Design and Energy-Saving Performance of Gate Rudder
by Chunhui Wang, Qian Gao, Lin Li, Feng Gao, Zhiyuan Wang and Chao Wang
J. Mar. Sci. Eng. 2025, 13(6), 1029; https://doi.org/10.3390/jmse13061029 - 24 May 2025
Abstract
As a novel energy-saving and maneuvering device for ships, the gate rudder system (GRS) functions similarly to an accelerating duct. While providing additional thrust, its independently controllable rudder blades on either side of the propeller also enhance ship maneuverability. The GRS was first [...] Read more.
As a novel energy-saving and maneuvering device for ships, the gate rudder system (GRS) functions similarly to an accelerating duct. While providing additional thrust, its independently controllable rudder blades on either side of the propeller also enhance ship maneuverability. The GRS was first fully implemented on a container ship in Japan, demonstrating improved propulsion efficiency, fuel savings, and excellent performance in maneuvering, noise, and vibration reduction. In recent years, extensive research has been conducted on the hydrodynamic performance, acoustic characteristics, and energy-saving effects of the GRS. However, certain gaps remain in the research, such as a lack of systematic studies on optimal GRS design in the publicly available literature. Only Ahmet Yusuf Gurkan has investigated the sensitivity of propulsion performance to parameters such as rudder angle, rudder X-shift, rudder tip skewness, and blade tip chord ratio. Therefore, this study employs the JBC benchmark vessel and adopts a coupled CFD-CAESES approach to develop a matching optimization design for the GRS. The influence of geometric parameters—including GRS airfoil camber, maximum camber position, chord length, thickness, distance from the leading edge to the propeller plane, and the gap between the GRS and propeller blades—on ship propulsion performance is investigated. The sensitivity of these design variables to propulsion performance is analyzed, and the optimal GRS design is selected to predict and evaluate its energy-saving effects. This research establishes a rapid and comprehensive CFD-based optimization methodology for GRS matching design. The findings indicate that the gap between the GRS and propeller, the distance from the GRS to the stern, and the airfoil camber of the GRS significantly contribute to various performance responses. After GRS installation, the viscous pressure resistance of the JBC ship decreases, resulting in an 8.05% energy-saving effect at the designated speed. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 4561 KiB  
Article
Noise and Vibration Analysis of Electric Oil Pump with Asymmetric Pitch Control for Gearbox in Hybrid and Battery Electric Vehicle
by Chinchul Choi
Appl. Sci. 2025, 15(10), 5779; https://doi.org/10.3390/app15105779 - 21 May 2025
Viewed by 53
Abstract
This study proposes an asymmetric pitch control technique for electric oil pumps with symmetric gear-type pumps in order to reduce noise and vibration. For vane pump noise reduction, mechanical asymmetric pitch arrangements of each vane are widely used. However, the mechanical asymmetric pitch [...] Read more.
This study proposes an asymmetric pitch control technique for electric oil pumps with symmetric gear-type pumps in order to reduce noise and vibration. For vane pump noise reduction, mechanical asymmetric pitch arrangements of each vane are widely used. However, the mechanical asymmetric pitch arrangement approach is not applicable in gear-type pumps due to structural limitations. The proposed asymmetric pitch control method provides similar effects to the mechanical asymmetric pitch arrangement by employing instantaneous motor torque controls for an electric oil pump with a gear-type pump. The magnitude of motor torque for each pump tooth is determined with an asymmetric pitch formula, which has been widely used for mechanical vane pumps in previous studies and patents. A formula for the shape of instantaneous motor torque is proposed for the analysis of pressure fluctuations of pumps, which is a combination of trigonometric and exponential functions. The calibration factors for the magnitude and shape can be adjusted according to the characteristics of a given pump. The experimental results for a 400 W electric pump show that the proposed method reduced and dispersed the noise peak by approximately 4 dB(A) in comparison with the normal control, and affected hydraulic performance with a less than 1% decrease in flow rate in not only pump-level but also gearbox-level test environments. Full article
(This article belongs to the Special Issue Noise Measurement, Acoustic Signal Processing and Noise Control)
Show Figures

Figure 1

22 pages, 2530 KiB  
Article
From Signal to Safety: A Data-Driven Dual Denoising Model for Reliable Assessment of Blasting Vibration Impacts
by Miao Sun, Jing Wu, Junkai Yang, Li Wu, Yani Lu and Hang Zhou
Buildings 2025, 15(10), 1751; https://doi.org/10.3390/buildings15101751 - 21 May 2025
Viewed by 45
Abstract
With the acceleration of urban renewal, directional blasting has become a common method for building demolition. Analyzing the time–frequency characteristics of blast-induced seismic waves allows for the assessment of risks to surrounding structures. However, the signals monitored are frequently tainted with noise, which [...] Read more.
With the acceleration of urban renewal, directional blasting has become a common method for building demolition. Analyzing the time–frequency characteristics of blast-induced seismic waves allows for the assessment of risks to surrounding structures. However, the signals monitored are frequently tainted with noise, which undermines the precision of time–frequency analysis. To counteract the dangers posed by blast vibrations, effective signal denoising is crucial for accurate evaluation and safety management. To tackle this challenge, a dual denoising model is proposed. This model consists of two stages. Firstly, it applies endpoint processing (EP) to the signal, followed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to suppress low-frequency clutter. High-frequency noise is then handled by controlling the multi-scale permutation entropy (MPE) of the intrinsic mode functions (IMF) obtained from EP-CEEMDAN. The EP-CEEMDAN-MPE framework achieves the first stage of denoising while mitigating the influence of endpoint effects on the denoising performance. The second stage of denoising involves combining the IMF obtained from EP-CEEMDAN-MPE to generate multiple denoising models. An objective function is established considering both the smoothness of the denoising models and the standard deviation of the error between the denoised signal and the measured signal. The denoising model corresponding to the optimal solution of the objective function is identified as the dual denoising model for blasting seismic wave signals. To validate the denoising effectiveness of the denoising model, simulated blasting vibration signals with a given signal-to-noise ratio (SNR) are constructed. Finally, the model is applied to real engineering blasting seismic wave signals for denoising. The results demonstrate that the model successfully reduces noise interference in the signals, highlighting its practical significance for the prevention and control of blasting seismic wave hazards. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

43 pages, 2107 KiB  
Article
Technical Design and Virtual Testing of a Dynamic Vibration Absorber for the Vibration Control of a Flexible Structure
by Carmine Maria Pappalardo, Giuseppe Isola, Angela Donadio, Rosario La Regina, Valentino Paolo Berardi and Domenico Guida
Dynamics 2025, 5(2), 19; https://doi.org/10.3390/dynamics5020019 - 21 May 2025
Viewed by 50
Abstract
This research work aims to design and develop a dynamic vibration absorber that effectively reduces the vibrations of a flexible structure subjected to external loads. The analysis presented in this paper initially focuses on identifying the resonance frequencies of a typical structural system, [...] Read more.
This research work aims to design and develop a dynamic vibration absorber that effectively reduces the vibrations of a flexible structure subjected to external loads. The analysis presented in this paper initially focuses on identifying the resonance frequencies of a typical structural system, which serves as the case study, since these frequencies are critical to dampening due to their potential to cause excessively large vibration amplitudes. Following this, the optimal parameters of the vibration absorber, including the mass, stiffness, and damping characteristics of the proposed design, were determined. Additionally, this paper proposes and examines the use of viscous-type damping, which is achieved through piston–cylinder systems connected to the structural components of the analyzed frame structure. Thus, the main contributions of this work include the analytical dimensioning, the technical design, and the virtual prototyping of a dynamic absorber constructed using a guyed mast structure capable of significantly reducing mechanical vibrations. This design solution ultimately enhances the strength and durability of the frame structure represented in the case study under external excitation, particularly in the worst-case scenario of seismic action. Furthermore, a key aspect of this study is implementing a new numerical procedure for identifying the system equivalent stiffness coefficient based on its mass and modal parameters, which is particularly useful in engineering applications. The numerical experiments conducted in this work support the effectiveness of the proposed design solution, devised specifically for the dynamic vibration absorber developed in this paper. Full article
Show Figures

Figure 1

19 pages, 4459 KiB  
Article
Reduction of the Cavitation Noise in an Automotive Heater Core
by Jeonga Lee, Woojae Jang, Yoonhyung Lee and Jintai Chung
Appl. Sci. 2025, 15(10), 5737; https://doi.org/10.3390/app15105737 - 20 May 2025
Viewed by 82
Abstract
This study investigates the mechanism behind the cavitation-induced noise in an automotive heater core and proposes a structural solution to eliminate it. Abnormal noise during cold-start conditions in a compact passenger vehicle was traced to cavitation in the heater core of the heating, [...] Read more.
This study investigates the mechanism behind the cavitation-induced noise in an automotive heater core and proposes a structural solution to eliminate it. Abnormal noise during cold-start conditions in a compact passenger vehicle was traced to cavitation in the heater core of the heating, ventilation, and air conditioning (HVAC) system. Controlled bench tests, in-vehicle measurements, and computational fluid dynamics (CFD) simulations were conducted to analyze flow behavior and identify the precise location and conditions for cavitation onset. Results showed that high flow rates and low coolant pressure generated vapor bubbles near the junction of the upper tank and outlet pipe, producing distinctive impulsive noise and vibration signals. Flow visualization using a transparent pipe and accelerometer data confirmed cavitation collapse at this location. CFD analysis indicated that the original geometry created a high-velocity, low-pressure region conducive to cavitation. A redesigned outlet with a tapered transition and larger diameter significantly improved flow conditions, raising the cavitation index and eliminating cavitation events. Experimental validation confirmed the effectiveness of the modified design. These findings contribute to improving the acoustic performance and reliability of automotive HVAC systems and offer broader insights into cavitation mitigation in fluid systems. Full article
Show Figures

Figure 1

28 pages, 4507 KiB  
Article
Structural Reliability of Tall Buildings Under Wind Loads with Tuned Mass Damper Fluid Inerters
by Cáelán McEvoy and Breiffni Fitzgerald
Buildings 2025, 15(10), 1736; https://doi.org/10.3390/buildings15101736 - 20 May 2025
Viewed by 107
Abstract
This study investigates the reliability of tall buildings subjected to dynamic across-wind loading, focusing on the Tuned Mass Damper Fluid Inerter (TMDFI). While existing literature emphasises the effectiveness of TMDFI in mitigating seismic hazards, research on its reliability regarding wind hazards remains limited. [...] Read more.
This study investigates the reliability of tall buildings subjected to dynamic across-wind loading, focusing on the Tuned Mass Damper Fluid Inerter (TMDFI). While existing literature emphasises the effectiveness of TMDFI in mitigating seismic hazards, research on its reliability regarding wind hazards remains limited. A wind-sensitive benchmark 76-storey building is modeled to compare the performance of the TMDFI against a traditional tuned mass damper (TMD) and an uncontrolled structure. A Monte Carlo Simulation (MCS) approach comprising 31,500 simulations is employed to assess reliability under uncertain damping ratios and varying turbulence intensities at reference wind speeds of 20 to 40 m/s. Key performance metrics, including peak acceleration and root mean squared (RMS) displacement responses, are derived through spectral analysis in the frequency domain. Results indicate that the TMDFI offers superior reliability, allowing an additional 6–7 m/s in reference velocity before reaching significant failure at the ISO limit state. Peak acceleration and RMS displacement are reduced by up to 64% to the uncontrolled structure. The TMDFI consistently outperforms both the TMD and uncontrolled configurations across all turbulent cases and wind velocities examined. Full article
Show Figures

Figure 1

24 pages, 6850 KiB  
Article
Comparative Study of Analytical Model Predictive Control and State Feedback Control for Active Vibration Suppression of Two-Mass Drive
by Adam Gorla and Piotr Serkies
Actuators 2025, 14(5), 254; https://doi.org/10.3390/act14050254 - 20 May 2025
Viewed by 70
Abstract
This article discusses speed control methods for electric motor drives with elastic mechanical coupling causing torsional vibrations, which negatively affect the operation of the system. Model Predictive Control (MPC) is often presented as an effective solution; however, it is notoriously difficult to implement [...] Read more.
This article discusses speed control methods for electric motor drives with elastic mechanical coupling causing torsional vibrations, which negatively affect the operation of the system. Model Predictive Control (MPC) is often presented as an effective solution; however, it is notoriously difficult to implement in real-time due to the high computational complexity of the controller. In this paper, a simplified predictive control approach in the form of Analytical MPC (aMPC) is proposed for the speed control of a two-mass motor drive. In contrast to conventional MPC, which requires complex online optimisation, aMPC derives an explicit control law analytically under simplifying assumptions, greatly reducing the computational load. The effect of the controller parameters on the drive performance is investigated and a multi-objective performance function for automatic tuning is proposed. The aMPC structure is compared with conventional State Feedback Control (SFC), including a system robustness test of both approaches. Based on simulation studies and experimental verification, the proposed structure is shown to ensure high dynamics in drive control, with smoother torque control and superior robustness for higher-load inertia ratios than SFC. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

24 pages, 2836 KiB  
Article
Response Prediction and Experimental Validation of Vibration Noise in the Conveyor Trough of a Combine Harvester
by Jianpeng Jing, Guangen Yan, Zhong Tang, Shuren Chen, Runzhi Liang, Yuxuan Chen and Xiaoying He
Agriculture 2025, 15(10), 1099; https://doi.org/10.3390/agriculture15101099 - 19 May 2025
Viewed by 237
Abstract
The noise generated by combine harvesters during operation has drawn growing attention, particularly that of the conveying trough shell, whose noise generation mechanism remains unclear. This study investigated the vibration radiation noise characteristics of conveying troughs by analyzing a chain system with 83 [...] Read more.
The noise generated by combine harvesters during operation has drawn growing attention, particularly that of the conveying trough shell, whose noise generation mechanism remains unclear. This study investigated the vibration radiation noise characteristics of conveying troughs by analyzing a chain system with 83 links using numerical simulation and experimental validation. A dynamic model of the conveyor chain system was developed, and the time domain reaction force at the bearing support was used as excitation for the trough shell’s finite element model. Modal and harmonic response analyses were performed to obtain the vibration response, which served as an acoustic boundary input for the LMS Virtual Lab. The indirect boundary element method was used to compute the radiated noise, achieving coupled modeling of chain system vibration and trough shell noise. Simulation results revealed that the maximum radiated noise occurred at approximately 112 Hz, closely matching experimental data. Comparative analysis of transmitted noise at 500 Hz and 700 Hz showed acoustic power levels of 98.4 dB and 109.52 dB, respectively. Results indicate that transmitted noise dominates over structural radiation in energy contribution, highlighting it as the primary noise path. This work offers a validated prediction model and supports noise control design for combine harvester conveying troughs. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 2173 KiB  
Article
Advancing the Prediction and Evaluation of Blast-Induced Ground Vibration Using Deep Ensemble Learning with Uncertainty Assessment
by Sinem Bozkurt Keser, Mahmut Yavuz and Gamze Erdogan Erten
Geosciences 2025, 15(5), 182; https://doi.org/10.3390/geosciences15050182 - 19 May 2025
Viewed by 182
Abstract
Ground vibration is one of the most dangerous environmental problems associated with blasting operations in mining. Therefore, accurate prediction and controlling the blast-induced ground vibration are imperative for environmental protection and sustainable development. The empirical approaches give inaccurate results, as evident in the [...] Read more.
Ground vibration is one of the most dangerous environmental problems associated with blasting operations in mining. Therefore, accurate prediction and controlling the blast-induced ground vibration are imperative for environmental protection and sustainable development. The empirical approaches give inaccurate results, as evident in the literature. Hence, numerous researchers have started to use fast-growing soft computing approaches that are satisfying in prediction performance. However, achieving high-prediction performance and detecting prediction uncertainty is crucial, especially in blasting operations. This study aims to propose a deep ensemble model to predict the blast-induced ground vibration and quantify the prediction uncertainty, which is usually not addressed. This study used 200 published data from ten granite quarry sites in Ibadan and Abeokuta areas, Nigeria. The empirical equation (United States Bureau of Mines-based approach) was applied for comparison. The comparison of the models demonstrated that the proposed deep ensemble model achieved superior performance, offering more accurate predictions and more reliable uncertainty quantification. Specifically, it exhibited the lowest root mean square error (22.674), negative log-likelihood (4.44), and mean prediction interval width (1.769), alongside the highest R2 value (0.77) and prediction interval coverage probability (0.95). The deep ensemble model reached the desired coverage of 95%, demonstrating that uncertainty was not underestimated or overestimated. Full article
Show Figures

Figure 1

22 pages, 5726 KiB  
Article
Simulation Prediction and Experimental Research on Surface Morphology of Ball Head Milling Processing
by Youzheng Cui, Xinmiao Li, Minli Zheng, Haijing Mu, Chengxin Liu, Dongyang Wang, Bingyang Yan, Qingwei Li, Hui Jiang, Fengjuan Wang and Qingming Hu
Materials 2025, 18(10), 2355; https://doi.org/10.3390/ma18102355 - 19 May 2025
Viewed by 215
Abstract
With the aim of improving the machined surface quality of die steel, this paper takes Cr12MoV quenched die steel as the research object and proposes a ball head milling surface morphology prediction model that comprehensively considers influencing factors, including tool vibration, eccentricity, as [...] Read more.
With the aim of improving the machined surface quality of die steel, this paper takes Cr12MoV quenched die steel as the research object and proposes a ball head milling surface morphology prediction model that comprehensively considers influencing factors, including tool vibration, eccentricity, as well as deformation. By setting key parameters, such as line spacing, feed per tooth, cutting depth, and phase difference, the system analyzed the influence of each parameter on the residual height and surface roughness of the machined surface. High-speed milling experiments were conducted, and the surface morphology of the samples was observed and measured under a microscope. The simulation results show good agreement with the experimental data, with errors within 7%~15%, proving the accuracy of the model. This study can provide theoretical support and methodological guidance for surface quality control and processing parameter optimization in complex mold surface machining. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

15 pages, 2355 KiB  
Article
Intelligent Detection and Automatic Removal Robot for Skinned Garlic Cloves
by Zhengbo Zhu, Xin Cao, Yawen Xiao, Li Xin, Lei Xin and Shuqian Li
Agriculture 2025, 15(10), 1076; https://doi.org/10.3390/agriculture15101076 - 16 May 2025
Viewed by 81
Abstract
After undergoing peeling-machine operations, skinned garlic cloves affect subsequent processing, and their manual removal is harmful to health. In this paper, an intelligent garlic-clove-removal test bench was designed, which mainly included a hopper, lifter, vibration conveyor, conveyor belt, visual system, removal robot, control [...] Read more.
After undergoing peeling-machine operations, skinned garlic cloves affect subsequent processing, and their manual removal is harmful to health. In this paper, an intelligent garlic-clove-removal test bench was designed, which mainly included a hopper, lifter, vibration conveyor, conveyor belt, visual system, removal robot, control cabinet, frame, etc. A technical method based on machine vision technology to distinguish whether or not garlic cloves had a skin was explored to ensure that the test bench could complete the recognition of the skinned garlic cloves, and to check that the test bench could also complete the removal of skinned garlic cloves. Tests were carried out to check the success rate of machine vision and the removal robot, and to optimize the parameters of the test bench. The results showed that the average success rate of machine vision was 99.15%, and the average success rate of the removal robot was 99.13%. The results also showed that the order of the three factors influence index was the conveying speed, the conveying volume, and the removal period. The regression analysis showed that when the conveying speed was 0.1 m·s−1, the grasping period was 1.725 s, the conveying volume was 104.4 kg·h−1, the qualified rate of the finished product was 97.15%, and the verification test result was 97.02%, which had no significant difference from the analysis result. The research results of this paper are conducive to the development of intelligent detection technology of garlic cloves, and to the development of garlic-planting technology and deep processing technology. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 23485 KiB  
Article
A Road-Adaptive Vibration Reduction System with Fuzzy PI Control Approach for Electric Bicycles
by Chao-Li Meng, Van-Tung Bui, Chyi-Ren Dow, Shun-Ming Chang and Yueh-E (Bonnie) Lu
World Electr. Veh. J. 2025, 16(5), 276; https://doi.org/10.3390/wevj16050276 - 16 May 2025
Viewed by 83
Abstract
Riding comfort and safety are essential requirements for any form of transportation but particularly for electric bicycles (e-bikes), which are highly affected by varying road conditions. These factors largely depend on the effectiveness of the e-bike’s control strategy. While several studies have proposed [...] Read more.
Riding comfort and safety are essential requirements for any form of transportation but particularly for electric bicycles (e-bikes), which are highly affected by varying road conditions. These factors largely depend on the effectiveness of the e-bike’s control strategy. While several studies have proposed control approaches that address comfort and safety, vibration—an influential factor in both structural integrity and rider experience—has received limited attention during the design phase. Moreover, many commercially available e-bikes provide manual assistance-level settings, leaving comfort and safety management to the rider’s experience. This study proposes a Road-Adaptive Vibration Reduction System (RAVRS) that can be deployed on an e-bike rider’s smartphone to automatically maintain riding comfort and safety using manual assistance control. A fuzzy-based control algorithm is adopted to dynamically select the appropriate assistance level, aiming to minimize vibration while maintaining velocity and acceleration within thresholds associated with comfort and safety. This study presents a vibration analysis to highlight the significance of vibration control in improving electronic reliability, reducing mechanical fatigue, and enhancing user experience. A functional prototype of the RAVRS was implemented and evaluated using real-world data collected from experimental trips. The simulation results demonstrate that the proposed system achieves effective control of speed and acceleration, with success rates of 83.97% and 99.79%, respectively, outperforming existing control strategies. In addition, the proposed RAVRS significantly enhances the riding experience by improving both comfort and safety. Full article
Show Figures

Figure 1

16 pages, 2301 KiB  
Article
Research on Numerical Calculation Methods for Modelling the Dynamics of Diesel Engine Crankshaft System Substructures
by Zhongxu Tian, Zengbin Sun, Yun Zhou and You Zhou
Appl. Sci. 2025, 15(10), 5551; https://doi.org/10.3390/app15105551 - 15 May 2025
Viewed by 171
Abstract
The complex structure of a diesel engine crankshaft, combined with diverse and dynamically changing loads, leads to the interaction of torsional, bending, and longitudinal vibrations. These complexities present challenges in achieving comprehensive and efficient dynamic modelling and analysis. This paper presents a dynamic [...] Read more.
The complex structure of a diesel engine crankshaft, combined with diverse and dynamically changing loads, leads to the interaction of torsional, bending, and longitudinal vibrations. These complexities present challenges in achieving comprehensive and efficient dynamic modelling and analysis. This paper presents a dynamic modelling and numerical computation method for the crankshaft system based on the substructure dynamic model to address this. Specifically, the primary degrees of freedom (DOFs) of the crankshaft system are transformed through coupling between master and slave node DOFs and DOF condensation. A numerical method for free vibration analysis is developed using Cholesky decomposition and Jacobi iteration, while a dynamic response is computed based on the Newmark-β implicit integration algorithm. Additionally, an adaptive step-size control strategy based on the energy gradient criterion was proposed by introducing a dynamic relaxation factor, significantly enhancing computational efficiency. The study further examines the influence of primary DOF selection, coupling region size between master and finite element nodes, bearing support stiffness, and integration step size on the dynamic response. Numerical case studies demonstrate that the substructure model, with fewer DOFs, accurately characterizes the dynamic behaviour of the crankshaft by appropriately selecting primary DOFs and computational parameters, thereby enabling efficient dynamic analysis. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

28 pages, 8860 KiB  
Article
Active Torsional Vibration Suppression Strategy for Power-Split-HEV Driveline System Based on Dual-Loop Control
by Wei Zhang, Xiaocong Liang, Zhengda Han, Lei Bu, Jingang Liu, Bing Fu and Mozhang Jiang
Machines 2025, 13(5), 418; https://doi.org/10.3390/machines13050418 - 15 May 2025
Viewed by 156
Abstract
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, [...] Read more.
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, a dynamic model of the power-split-HEV driveline is established, and its intrinsic characteristics are analyzed. Subsequently, an engine excitation torque model is developed to identify the dominant response orders, while a vehicle dynamics model is constructed to elucidate the torsional vibration mechanisms in both hybrid and pure electric driving modes. Next, a torsional vibration feedback control framework is proposed, utilizing the electric motor as a secondary-channel torque disturbance compensator. Furthermore, a novel frequency-decoupled dual-loop control framework is proposed, with rigorous derivation of the sufficient conditions for decoupling. Based on this framework, two distinct vibration suppression algorithms are developed for the secondary-loop controller, each tailored for specific operational modes. Finally, the proposed algorithms are validated through simulation and hardware-in-the-loop (HIL) testing. The results demonstrate a torque fluctuation suppression ratio of up to 72.2%, confirming that the active suppression algorithm effectively mitigates driveline torsional vibration induced by engine harmonic torque disturbances. Full article
(This article belongs to the Special Issue Advances in Dynamic Analysis of Multibody Mechanical Systems)
Show Figures

Figure 1

Back to TopTop