Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,557)

Search Parameters:
Keywords = vibration technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2841 KB  
Article
Application of PVDF Transducers for Piezoelectric Energy Harvesting in Unmanned Aerial Vehicles
by Laís dos Santos Gonçalves, Ricardo Morais Leal Pereira, Rafael Salomão Tyszler, Maria Clara A. M. Morais and Carlos Roberto Hall Barbosa
Energies 2025, 18(17), 4759; https://doi.org/10.3390/en18174759 (registering DOI) - 7 Sep 2025
Abstract
The demand for sustainable energy generation and storage methods has become inevitable. As a result, numerous sectors are investing in research focused on energy harvesting (EH) techniques. In this context, a promising area involves integrating piezoelectric materials into unmanned aerial vehicles (UAVs)—an application [...] Read more.
The demand for sustainable energy generation and storage methods has become inevitable. As a result, numerous sectors are investing in research focused on energy harvesting (EH) techniques. In this context, a promising area involves integrating piezoelectric materials into unmanned aerial vehicles (UAVs)—an application that enables electrical energy generation from the kinetic energies produced during flight. This article aims to use polyvinylidene fluoride (PVDF) piezoelectric transducers coupled to an EH power management unit (LTC3588-1) to convert and store electrical energy generated by wind from the propellers and motor vibration. Methodologically, the motor and transducers are characterized, a model is developed using LTSpice®, and experimental validation of the performance of this coupling is carried out for output voltages (Vout) of 1.8 V, 2.5 V, 3.3 V, and 3.6 V. With a motor rotation speed of 3975 rpm, the transducers generated a voltage amplitude of 17.3 V, enabling the capacitor coupled to the EH power management unit—adjusted to the highest Vout—to be charged in approximately 162 s. Thus, this study demonstrated the feasibility of using PVDF as a piezoelectric nanogenerator in UAVs, enabling onboard electronic circuits and sensors to be powered while reserving the battery solely for propulsion, thereby increasing flight autonomy. Full article
Show Figures

Figure 1

27 pages, 1635 KB  
Article
Dynamic Analysis of Variable-Stiffness Laminated Composite Plates with an Arbitrary Damaged Area in Supersonic Airflow
by Pingan Zou, Dong Shao, Ningze Sun and Weige Liang
Aerospace 2025, 12(9), 802; https://doi.org/10.3390/aerospace12090802 - 5 Sep 2025
Abstract
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is [...] Read more.
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is formulated using first-order shear deformation theory (FSDT). Additionally, the first-order piston theory is utilized to model the aerodynamic pressure in supersonic airflow. A novel coupling methodology is developed through the integration of penalty function methods and irregular mapping techniques, which effectively establishes the interaction between damaged and undamaged plate elements. The vibration characteristics and aeroelastic responses are systematically analyzed using the Chebyshev differential quadrature method (CDQM). The validity of the proposed model is thoroughly demonstrated through comparative analyses with the existing literature and finite element simulations, confirming its computational accuracy and broad applicability. A notable characteristic of this research is its ability to accommodate arbitrary geometric configurations within damaged regions. The numerical results unequivocally demonstrate that accurately predicting the flutter characteristics of damaged VSCL plates constitutes an effective strategy for mitigating structural stability degradation. This approach provides valuable insights for aerospace structural design and maintenance. Full article
(This article belongs to the Section Aeronautics)
40 pages, 6644 KB  
Article
Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination
by Marina Manica, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, Daniel Marcel Manoli and Emmanuel Koudoumas
Nanomaterials 2025, 15(17), 1369; https://doi.org/10.3390/nano15171369 - 4 Sep 2025
Viewed by 141
Abstract
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into [...] Read more.
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into ZnO, and the resulting powders were drop-cast as thin films on glass substrates. This approach enables the transfer of pre-engineered nanoscale morphologies into the final thin-film architecture. The morphological analysis by scanning electron microscopy (SEM) revealed a predominance of spherical nanoparticles and nanorods, with distinct variations in size and aspect ratio depending on dopant type and concentration. X-ray diffraction (XRD) and Rietveld analysis confirmed the wurtzite ZnO structure with increasing evidence of secondary phase formation at high dopant levels (e.g., Er2O3, Sm2O3, and La(OH)3). Raman spectroscopy showed peak shifts, broadening, and defect-related vibrational modes induced by RE incorporation, in agreement with the lattice strain and crystallinity variations observed in XRD. Elemental mapping (EDX) confirmed uniform dopant distribution. Optical transmittance exceeded 70% for all films, with Tauc analysis revealing slight bandgap narrowing (Eg = 2.93–2.97 eV) compared to pure ZnO. This study demonstrates that rare-earth doping via electrospun nanocluster precursors is a viable route to engineer ZnO thin films with tunable structural and optical properties. Despite current limitations in film-substrate adhesion, the method offers a promising pathway for future transparent optoelectronic, sensing, or UV detection applications, where further interface engineering could unlock their full potential. Full article
24 pages, 19377 KB  
Article
ECL5/CATANA: Comparative Analysis of Advanced Blade Vibration Measurement Techniques
by Christoph Brandstetter, Alexandra P. Schneider, Anne-Lise Fiquet, Benoit Paoletti, Kevin Billon and Xavier Ottavy
Int. J. Turbomach. Propuls. Power 2025, 10(3), 29; https://doi.org/10.3390/ijtpp10030029 - 4 Sep 2025
Viewed by 133
Abstract
A comprehensive understanding of aerodynamic instabilities, such as flutter, non-synchronous vibration (NSV), rotating stall, and forced response, is crucial for the safe and efficient operation of turbomachinery, particularly fans and compressors. These instabilities impose significant limitations on the operating envelope, necessitating precise monitoring [...] Read more.
A comprehensive understanding of aerodynamic instabilities, such as flutter, non-synchronous vibration (NSV), rotating stall, and forced response, is crucial for the safe and efficient operation of turbomachinery, particularly fans and compressors. These instabilities impose significant limitations on the operating envelope, necessitating precise monitoring and accurate quantification of vibration amplitudes during experimental investigations. This study addresses the challenge of measuring these amplitudes by comparing multiple measurement systems applied to the open-test case of the ultra-high bypass ratio (UHBR) fan ECL5. During part-speed operation, the fan exhibited a complex aeromechanical phenomenon, where an initial NSV of the second blade eigenmode near peak pressure transitioned to a dominant first-mode vibration. This mode shift was accompanied by substantial variations in blade vibration patterns, as evidenced by strain gauge data and unsteady wall pressure measurements. These operating conditions provided an optimal test environment for evaluating measurement systems. A comprehensive and redundant experimental setup was employed, comprising telemetry-based strain gauges, capacitive tip timing sensors, and a high-speed camera, to capture detailed aeroelastic behaviour. This paper presents a comparative analysis of these measurement systems, emphasizing their ability to capture high-resolution, accurate data in aeroelastic experiments. The results highlight the critical role of rigorous calibration procedures and the complementary use of multiple measurement technologies in advancing the understanding of turbomachinery instabilities. The insights derived from this investigation shed light on a complex evolution of instability mechanisms and offer valuable recommendations for future experimental studies. The open-test case has been made accessible to the research community, and the presented data can be used directly to validate coupled aeroelastic simulations under challenging operating conditions, including non-linear blade deflections. Full article
Show Figures

Figure 1

20 pages, 6244 KB  
Article
Decentralized Compliance Control for Multi-Axle Heavy Vehicles Equipped with Electro-Hydraulic Actuator Suspension Systems
by Mengke Yang, Chunbo Xu and Min Yan
Sensors 2025, 25(17), 5456; https://doi.org/10.3390/s25175456 - 3 Sep 2025
Viewed by 205
Abstract
This article introduces a novel decentralized compliance control technique designed to manage the behavior of multi-axle heavy vehicles equipped with electro-hydraulic actuator suspension systems on uneven terrains. To address the challenges of controller design complexity and network communication burden in large-scale active suspension [...] Read more.
This article introduces a novel decentralized compliance control technique designed to manage the behavior of multi-axle heavy vehicles equipped with electro-hydraulic actuator suspension systems on uneven terrains. To address the challenges of controller design complexity and network communication burden in large-scale active suspension systems for multi-axle heavy vehicles, the decentralized scheme proposed in this paper decomposes the overall vehicle control problem into decentralized compliance control tasks for multiple electro-hydraulic actuator suspension subsystems (MEHASS), each responding to road disturbances. The position-based compliance control strategy consists of an outer-loop generalized impedance controller (GIC) and an inner-loop position controller. The GIC, which offers explicit force-tracking performance, is employed to define the dynamic interaction between each wheel and the uneven road surface, thereby generating the vertical trajectory for the MEHASS. This design effectively reduces vertical vibration transmission to the vehicle chassis, improving ride comfort. To handle external disturbances and enhance control accuracy, the position control employs a nonsingular fast integral terminal sliding mode controller. Furthermore, a three-axle heavy vehicle prototype with electro-hydraulic actuator suspension is developed for on-road driving experiments. The effectiveness of the proposed control method in enhancing ride comfort is demonstrated through comparative experiments. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

22 pages, 8772 KB  
Article
Compact Turbine Last Stage-Exhaust Hood: Aerodynamic Performance and Structural Optimization Under Coupled Variable Working Conditions
by Yuang Shi, Lei Zhang, Yujin Zhou, Luotao Xie and Zichun Yang
Machines 2025, 13(9), 801; https://doi.org/10.3390/machines13090801 - 3 Sep 2025
Viewed by 202
Abstract
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of [...] Read more.
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of the last-stage moving blade shrouds and exhaust hood stiffeners on steam flow loss, static pressure recovery, and vibrational excitation. The research methodology includes the following: employing a hybrid structured-unstructured meshing technique, conducting numerical simulations based on the Shear Stress Transport (SST) turbulence model, and utilizing the static pressure recovery coefficient, total pressure loss coefficient, and cross-sectional flow velocity non-uniformity as performance evaluation metrics. The principal findings are as follows: (1) After installing self-locking shrouds on the moving blades, steam flow loss is reduced by 4.7%, and the outlet pressure non-uniformity decreases by 12.3%. (2) Although the addition of cruciform stiffeners in the diffuser section of the exhaust hood enhances structural rigidity, it results in an 8.4% decrease in the static pressure recovery coefficient, necessitating further optimization of geometric parameters. (3) The coupled model exhibits optimal aerodynamic performance at a 50% design flow rate and 100% design exhaust pressure. The results provide a theoretical basis for the structural optimization of low-noise compact steam turbines. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

31 pages, 2841 KB  
Article
Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization
by Devasmito Das, Ina Taralova, Jean Jacques Loiseau, Tsonyo Slavov and Manoj Pandey
Fractal Fract. 2025, 9(9), 581; https://doi.org/10.3390/fractalfract9090581 - 2 Sep 2025
Viewed by 198
Abstract
Fractional-order models provide a powerful framework for capturing memory-dependent and viscoelastic dynamics in mechanical systems, which are often inadequately represented by classical integer-order characterizations. This study addresses the identification of dynamic parameters in both single-degree-of-freedom (1-DOF) and three-degree-of-freedom (3-DOF) Duffing oscillators with fractional [...] Read more.
Fractional-order models provide a powerful framework for capturing memory-dependent and viscoelastic dynamics in mechanical systems, which are often inadequately represented by classical integer-order characterizations. This study addresses the identification of dynamic parameters in both single-degree-of-freedom (1-DOF) and three-degree-of-freedom (3-DOF) Duffing oscillators with fractional damping, modeled using the Grünwald–Letnikov characterization. The 1-DOF system includes a cubic nonlinear restoring force and is excited by a harmonic input to induce steady-state oscillations. For both systems, time domain simulations are conducted to capture long-term responses, followed by Fourier decomposition to extract steady-state displacement, velocity, and acceleration signals. These components are combined with a GL-based fractional derivative approximation to construct structured regressor matrices. System parameters—including mass, stiffness, damping, and fractional-order effects—are then estimated using pseudoinverse techniques. The identified models are validated through a comparison of reconstructed and original trajectories in the phase space, demonstrating high accuracy in capturing the underlying dynamics. The proposed framework provides a consistent and interpretable approach for frequency domain system identification in fractional-order nonlinear systems, with relevance to applications such as mechanical vibration analysis, structural health monitoring, and smart material modeling. Full article
Show Figures

Figure 1

15 pages, 2426 KB  
Article
Damping Ratio Estimation of Heavily Damped Structures Using State-Space Modal Responses
by Jungtae Noh, Jae-Seung Hwang and Maria Rosa Valluzzi
Sensors 2025, 25(17), 5416; https://doi.org/10.3390/s25175416 - 2 Sep 2025
Viewed by 210
Abstract
Vibration control systems are extensively utilized in structures to enhance their resilience against earthquakes and wind forces. However, structures with significant damping exhibit atypical damping behaviors, which impose constraints on the effectiveness of traditional modal analysis methods for discerning modal responses and estimating [...] Read more.
Vibration control systems are extensively utilized in structures to enhance their resilience against earthquakes and wind forces. However, structures with significant damping exhibit atypical damping behaviors, which impose constraints on the effectiveness of traditional modal analysis methods for discerning modal responses and estimating properties. To surmount this challenge, a novel State-Space-Based Modal Decomposition approach is proposed in this study. The State-Space-Based Modal Decomposition technique adeptly extracts modal responses and identifies modal attributes from acquired data of highly damped structures. The approach accurately calculates damping ratios and natural frequencies by scrutinizing the power spectrum within the deconstructed modal response. The validity of this method is confirmed through a numerical simulation with a three-degree-of-freedom system equipped with oil dampers and experimentation of a structure outfitted with a tuned mass damper system. The findings underscore that the transfer function of the modal response in state-space encompasses both displacement and velocity transfer functions. The results demonstrate that precise estimation of modal parameters can be accomplished by suitably evaluating the participation ratio of the two response components. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 4889 KB  
Article
Self-Healing Imidazole-Cured Epoxy Using Microencapsulated Epoxy-Amine Chemistry
by Zhihui Li, Gang Du, Sen Yang, Xuerong Lu, Fuli Zheng, Bin Hao, Peng Zhan, Guangmao Li and He Zhang
Polymers 2025, 17(17), 2391; https://doi.org/10.3390/polym17172391 - 1 Sep 2025
Viewed by 375
Abstract
Epoxy resins used in reactors are prone to cracking and failure due to mechanical vibration, thermal stress, and ultraviolet radiation. Improving their resistance to damage is important to extend the service life of reactors. This investigation develops a self-healing imidazole-cured epoxy resin for [...] Read more.
Epoxy resins used in reactors are prone to cracking and failure due to mechanical vibration, thermal stress, and ultraviolet radiation. Improving their resistance to damage is important to extend the service life of reactors. This investigation develops a self-healing imidazole-cured epoxy resin for reactors using epoxy microcapsules and amine microcapsules prepared by electrospraying-interfacial polymerization (ES-IP) microencapsulation technique. Firstly, this investigation studies the feasibility of using double nozzles for simultaneous spraying to improve the preparation of small-sized microcapsules. After successful synthesis, the healing performance of self-healing imidazole-cured epoxy based on the microencapsulated epoxy-amine chemistry was studied, focusing on the influence of the ratio, concentration, and size of the two microcapsules on the healing efficiency, and further exploring the thermal stability of the self-healing performance. The addition of microcapsules to the mechanical properties was also investigated. Results show that the double-nozzle technique can prepare microcapsules with controllable sizes (20~200 μm). The self-healing imidazole-cured epoxy exhibits high self-healing performance, reaching 100% at the optimal ratio with 10.0 wt% 50~100 μm microcapsules. Although the added microcapsules reduce the tensile strength of the material, they improve its high-temperature aging resistance. The above investigation is significant for developing self-healing fiber-reinforced epoxy-based composite materials for reactors. Full article
(This article belongs to the Special Issue Thermal Behavior of Polymer Materials II)
Show Figures

Figure 1

24 pages, 7537 KB  
Article
A Mathematical Methodology for the Detection of Rail Corrugation Based on Acoustic Analysis: Toward Autonomous Operation
by César Ricardo Soto-Ocampo, Juan David Cano-Moreno, Joaquín Maroto and José Manuel Mera
Mathematics 2025, 13(17), 2815; https://doi.org/10.3390/math13172815 - 1 Sep 2025
Viewed by 241
Abstract
In autonomous railway systems, where there is no driver acting as the primary fault detector, annoying interior noise caused by track defects can go unnoticed for long periods. One of the main contributors to this phenomenon is rail corrugation, a recurring defect that [...] Read more.
In autonomous railway systems, where there is no driver acting as the primary fault detector, annoying interior noise caused by track defects can go unnoticed for long periods. One of the main contributors to this phenomenon is rail corrugation, a recurring defect that generates vibrations and acoustic emissions, directly affecting passenger comfort and accelerating infrastructure deterioration. This work presents a methodology for the automatic detection of corrugated track sections, based on the mathematical modeling of the spectral content of onboard-recorded acoustic signals. The hypothesis is that these defects produce characteristic peaks in the frequency domain, whose position depends on speed but whose wavelength remains constant. The novelty of the proposed approach lies in the formulation of two functional spectral indices—IIAPD (permissive) and EWISI (restrictive)—that combine power spectral density (PSD) and fast Fourier transform (FFT) analysis over spatial windows, incorporating adaptive frequency bands and dynamic prominence thresholds according to train speed. This enables robust detection without manual intervention or subjective interpretation. The methodology was validated under real operating conditions on a commercially operated metro line and compared with two reference techniques. The results show that the proposed approach achieved up to 19% higher diagnostic accuracy compared to the best-performing reference method, maintaining consistent detection performance across all evaluated speeds. These results demonstrate the robustness and applicability of the method for integration into autonomous trains as an onboard diagnostic system, enabling reliable, continuous monitoring of rail corrugation severity using reproducible mathematical metrics. Full article
Show Figures

Figure 1

24 pages, 10517 KB  
Article
Spectral-Clustering-Guided Fourier Decomposition Method and Bearing Fault Feature Extraction
by Wenxu Zhang, Chaoyong Ma, Gehao Feng, Yanping Zhu, Kun Zhang and Yonggang Xu
Vibration 2025, 8(3), 49; https://doi.org/10.3390/vibration8030049 - 1 Sep 2025
Viewed by 194
Abstract
The Fourier decomposition technique has notable advantages in filtering vibration acceleration signals and enhances the feasibility of frequency-domain mode decomposition. To improve the accuracy of mode extraction, this paper proposed a novel Fourier decomposition technique based on spectral clustering. The methodology comprises three [...] Read more.
The Fourier decomposition technique has notable advantages in filtering vibration acceleration signals and enhances the feasibility of frequency-domain mode decomposition. To improve the accuracy of mode extraction, this paper proposed a novel Fourier decomposition technique based on spectral clustering. The methodology comprises three key steps. First, spectral clustering is performed using feature vectors derived from the spectrum envelope, specifically the frequency and amplitude of its maximum value, along with the average amplitude of local spectral peaks. Subsequently, the spectrum is adaptively segmented based on clustering feedback to determine spectral segmentation boundaries. Followed by this, a filter bank is constructed via Fourier decomposition for signal reconstruction. Finally, a harmonic correlation index is computed for all decomposed components to identify fault-sensitive modes exhibiting the highest diagnostic relevance. These selected modes are subsequently subjected to demodulation for fault diagnosis. The effectiveness of the proposed method is validated through both simulated signals and experimental datasets, demonstrating its improved ability to capture critical fault information. Full article
Show Figures

Figure 1

24 pages, 5700 KB  
Article
Performance Study of the Vibrating Wire Technique to Determine Longitudinal Magnetic Field Profile Using Scans to High Wire Harmonic
by Cameron Kenneth Baribeau
Metrology 2025, 5(3), 53; https://doi.org/10.3390/metrology5030053 - 1 Sep 2025
Viewed by 182
Abstract
Particle accelerator laboratories, which enable world-class research across many scientific fields, depend on the magnets used to manipulate their particle beams for successful operation. The community employs various techniques, typically based on Hall probes and induction sensors/coils, to verify the performance of these [...] Read more.
Particle accelerator laboratories, which enable world-class research across many scientific fields, depend on the magnets used to manipulate their particle beams for successful operation. The community employs various techniques, typically based on Hall probes and induction sensors/coils, to verify the performance of these accelerator magnets. When the transverse access around a magnet is restricted, conventional Hall probe systems cannot be deployed or require significant modification, while moving wire/coil systems tend to provide information only on the magnetic field’s integral. This research builds upon a vibrating wire setup first commissioned to locate the magnetic center of quadrupole magnets. Scans up to the n = 200 wire harmonic (∼10 kHz drive frequency) were measured to reconstruct the magnetic field across a wire strung through a test magnet. New software was developed to systematically process the many frequency response scans needed for a detailed field reconstruction. This research investigated the speed and precision of the measurement, identifying limitations due to both instrumentation and nonlinear wire behavior. The vibrating wire data agreed with a reference Hall probe scan on the order of 6%; roughly 0.7% RMS error persisted after calibrating the vibrating wire data to the reference scan via scaling factor. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

21 pages, 1415 KB  
Article
Vibration Reduction and Stability Investigation of Van Der Pol–Mathieu–Duffing Oscillator via the Nonlinear Saturation Controller
by Ashraf Taha EL-Sayed, Rageh K. Hussein, Yasser A. Amer, Sara S. Mahmoud, Sharif Abu Alrub and Taher A. Bahnasy
Actuators 2025, 14(9), 427; https://doi.org/10.3390/act14090427 - 31 Aug 2025
Viewed by 211
Abstract
This study investigates the effect of a nonlinear saturation controller (NSC) on the van der Pol–Mathieu–Duffing oscillator (VMDO). The oscillator is a single degree of freedom (DOF) system. It is driven by an external force. It is described by a nonlinear differential equation [...] Read more.
This study investigates the effect of a nonlinear saturation controller (NSC) on the van der Pol–Mathieu–Duffing oscillator (VMDO). The oscillator is a single degree of freedom (DOF) system. It is driven by an external force. It is described by a nonlinear differential equation (DE). The multiple-scale perturbation method (MSPT) is applied. It gives second-order analytical solutions. The first indirect Lyapunov method is used. It provides the frequency–response equation. It also shows the stability conditions. Internal resonance is included. The analysis considers steady-state responses. It studies simultaneous primary resonance with a 1:2 internal resonance (Λ1ϖ1 and ϖ12ϖ2). Time–response simulations are presented. They show controlled and uncontrolled systems. Numerical solutions (NSs) are obtained with the fourth-order Runge–Kutta method (RK-4). They are compared with the approximate analytical solution (AS). The agreement is strong. It confirms the perturbation method. It shows that the method captures the main system dynamics. Full article
Show Figures

Figure 1

27 pages, 1057 KB  
Review
Distributed Acoustic Sensing for Road Traffic Monitoring: Principles, Signal Processing, and Emerging Applications
by Jingxiang Deng, Long Jin, Hongzhi Wang, Zihao Zhang, Yanjiang Liu, Fei Meng, Jikai Wang, Zhenghao Li and Jianqing Wu
Infrastructures 2025, 10(9), 228; https://doi.org/10.3390/infrastructures10090228 - 29 Aug 2025
Viewed by 376
Abstract
With accelerating urbanization and the exponential growth in vehicle populations, high-precision traffic monitoring has become indispensable for intelligent transportation systems (ITSs). Conventional sensing technologies—including inductive loops, cameras, and radar—suffer from inherent limitations: restrictive spatial coverage, prohibitive installation costs, and vulnerability to adverse weather. [...] Read more.
With accelerating urbanization and the exponential growth in vehicle populations, high-precision traffic monitoring has become indispensable for intelligent transportation systems (ITSs). Conventional sensing technologies—including inductive loops, cameras, and radar—suffer from inherent limitations: restrictive spatial coverage, prohibitive installation costs, and vulnerability to adverse weather. Distributed Acoustic Sensing (DAS), leveraging Rayleigh backscattering to convert standard optical fibers into kilometer-scale, real-time vibration sensor networks, presents a transformative alternative. This paper provides a comprehensive review of the principles and system architecture of DAS for roadway traffic monitoring, with a focus on signal processing techniques, feature extraction methods, and recent advances in vehicle detection, classification, and speed/flow estimation. Special attention is given to the integration of deep learning approaches, which enhance noise suppression and feature recognition under complex, multi-lane traffic conditions. Real-world deployment cases on highways, urban roads, and bridges are analyzed to demonstrate DAS’s practical value. Finally, this paper delineates emerging research trends and technical hurdles, providing actionable insights for the scalable implementation of DAS-enhanced ITS infrastructures. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

14 pages, 8705 KB  
Article
Research on Blade Asynchronous Vibration Parameter Identification for Large-Scale Centrifugal Compressor Based on Improved MUSIC Algorithm
by Zhenfang Fan, Yongtao Shen, Yupeng Du, Jinying Huang and Siyuan Liu
Sensors 2025, 25(17), 5351; https://doi.org/10.3390/s25175351 - 29 Aug 2025
Viewed by 330
Abstract
Blade tip timing (BTT) is a core technique for investigating the blade vibration of large-scale centrifugal compressors, and identifying the parameters of blade asynchronous vibration is crucial for implementing blade condition monitoring based on the BTT technique. In this study, the multiple signal [...] Read more.
Blade tip timing (BTT) is a core technique for investigating the blade vibration of large-scale centrifugal compressors, and identifying the parameters of blade asynchronous vibration is crucial for implementing blade condition monitoring based on the BTT technique. In this study, the multiple signal classification (MUSIC) algorithm and the estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm were first applied separately to identify the asynchronous vibration parameters of centrifugal compressor blades, with their advantages and disadvantages discussed. Subsequently, based on the frequency distribution characteristics in the ESPRIT results, the concept of “frequency distribution rate” was proposed. Finally, the results of the MUSIC algorithm were weighted by the frequency distribution rate, and an improved MUSIC algorithm was proposed. This enhanced confidence in the real frequency in the MUSIC algorithm results. Compared with the strain gauge method, the maximum relative error of the improved algorithm is 0.23%. The improved MUSIC algorithm improves the accuracy of parameter identification for blade asynchronous vibration, which holds great significance for the industrial application of the BTT technique. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop