Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (525)

Search Parameters:
Keywords = virtual surgery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5464 KB  
Article
Simulation-Based Testing of Autonomous Robotic Systems for Surgical Applications
by Jun Lin, Tiantian Sun, Rihui Song, Di Zhu, Lan Liu, Jiewu Leng, Kai Huang and Rongjie Yan
Actuators 2025, 14(9), 439; https://doi.org/10.3390/act14090439 - 4 Sep 2025
Abstract
Autonomous surgery involves surgical tasks performed by a robot with minimal or no human involvement. Thanks to its precise automation, surgical robotics offers significant benefits in enhancing the consistency, safety, and quality of procedures, driving its growing popularity. However, ensuring the safety of [...] Read more.
Autonomous surgery involves surgical tasks performed by a robot with minimal or no human involvement. Thanks to its precise automation, surgical robotics offers significant benefits in enhancing the consistency, safety, and quality of procedures, driving its growing popularity. However, ensuring the safety of autonomous surgical robotic systems remains a significant challenge. To address this, we propose a simulation-based validation method to detect potential safety issues in the software of surgical robotic systems, complemented by a digital twin to estimate the gap between simulation and reality. The validation framework consists of a test case generator and a monitor for validating properties and evaluating the performance of the robotic system during test execution. Using a robotic arm for needle insertion as a case study, we present a systematic test case generation method that ensures effective coverage measurement for a three-dimensional, irregular model. Since no simulation can perfectly replicate reality due to differences in sensing and actuation, the digital twin bridges the gap between simulation and the physical robotic arm. This integration enables us to assess the discrepancy between virtual simulations and real-world operations by verifying whether the data from the simulation accurately predicts real-world outcomes. Through extensive experimentation, we identified several flaws in the robotic software. Co-simulation within the digital twin framework has highlighted these discrepancies that should be considered. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

12 pages, 2796 KB  
Article
Wedge Osteotomy of the Maxilla for the Treatment of Obstructive Sleep Apnea (OSA) Through Virtual Surgical Planning, CAD/CAM Technology: Consecutive Case Series
by Antonio Scarano, Roberto Pistilli, Flavio Andrea Govoni, Silvio Di Nezza, Luca Tarascio, Filippo Pica, Luca De Paolis, Alessandra Celebrini, Vinicio Magliacani, Gianluca Bellocchi and Vincenzo Antonio Marcelli
Surgeries 2025, 6(3), 74; https://doi.org/10.3390/surgeries6030074 - 30 Aug 2025
Viewed by 253
Abstract
Orthognathic surgery, particularly maxillomandibular advancement (MMA), has emerged as an effective therapeutic option for patients with moderate to severe OSA who are refractory to conventional treatments. The wedge osteotomy of the maxilla, often performed in combination with mandibular surgery, can be a surgical [...] Read more.
Orthognathic surgery, particularly maxillomandibular advancement (MMA), has emerged as an effective therapeutic option for patients with moderate to severe OSA who are refractory to conventional treatments. The wedge osteotomy of the maxilla, often performed in combination with mandibular surgery, can be a surgical treatment for obstructive sleep apnea (OSA). This case series report describes 6 OSA patients without anteroposterior maxillary deficiency who were treated with wedge osteotomy of the maxilla. Material and Methods: We conducted a retrospective analysis of 6 patients who underwent maxillomandibular advancement (MMA) for obstructive sleep apnea (OSA), all operated on consecutively by the same surgeon between 2018 and 2024 at the Maxillofacial Surgery of San Camillo-Forlanini Hospital, in Rome, Italy. Patients were evaluated using a CAD/CAM-assisted approach. A pre- and postoperative comparative analysis was conducted to assess the effectiveness of the surgical treatment in improving OSA-related parameters. Maxillary wedge osteotomy and bilateral sagittal split osteotomies (BSSO) of the mandibular ramus were digitally planned. Results: The comparison between preoperative and postoperative CT scans, along with 3D reconstructions generated using dedicated software, revealed a counterclockwise rotation of the occlusal plane, resulting in a mandibular advancement of approximately 13 mm. The CT shows a significant increase in airway volume following the skeletal repositioning. The airway volume increased from 20.665 ± 546 mm3 to 27.177 ± 446 mm3. Conclusions: Counterclockwise rotational orthognathic surgery without maxillary advancement has been shown to effectively enlarge the posterior pharyngeal space while also delivering excellent esthetic outcomes. Full article
Show Figures

Figure 1

39 pages, 1172 KB  
Systematic Review
Dynamic Navigation in Endodontic Surgery: A Systematic Review
by Federica Di Spirito, Roberta Gasparro, Maria Pia Di Palo, Giuseppina De Benedetto, Francesco Giordano, Massimo Amato and Alessia Bramanti
Healthcare 2025, 13(17), 2151; https://doi.org/10.3390/healthcare13172151 - 28 Aug 2025
Viewed by 228
Abstract
Background: While widely investigated in implantology and nonsurgical endodontics, evidence on the application of dynamic navigation systems (DNSs) in endodontic surgery remains limited. This systematic review aimed to assess their accuracy and reliability based on two-dimensional and three-dimensional virtual deviations, osteotomy parameters, as [...] Read more.
Background: While widely investigated in implantology and nonsurgical endodontics, evidence on the application of dynamic navigation systems (DNSs) in endodontic surgery remains limited. This systematic review aimed to assess their accuracy and reliability based on two-dimensional and three-dimensional virtual deviations, osteotomy parameters, as well as procedural duration, the impact of the dentist’s level of expertise, endodontic surgery healing outcomes, complications, and dentist- and patient-reported feedback. Methods: Following the PRISMA guidelines, an electronic search was conducted across the PubMed/MEDLINE, Scopus, Web of Science, and PROSPERO (CRD420251056347) databases up to 23 April 2025. Eligible studies involved human subjects (cadaveric or live) undergoing endodontic surgery with dynamic navigation. Extracted data focused on accuracy metrics such as platform/apical depth deviation and angular deflection. Results: Fourteen studies involving 240 roots were included. DNSs showed high accuracy, with mean platform and apical deviations of 1.17 ± 0.84 mm and 1.21 ± 0.99 mm, respectively, and angular deflection of 2.29° ± 1.69°, as well as low global deviations, averaging 0.83 ± 0.34 mm at the platform and 0.98 ± 0.79 mm at the apex. Root-end resections averaged 3.02 mm in length and 7.49° in angle deviation. DNS-assisted steps averaged 5.6 ± 2.56 min. Healing outcomes were favorable and complications were infrequent. Conclusions: DNSs demonstrated satisfactory accuracy and efficiency and, in the included studies, were linked to favorable healing outcomes and a low occurrence of intra- and postoperative complications. Nevertheless, the current evidence is still limited by the small number of available studies, and the heterogeneity in study designs and outcome measures, highlighting the need for further studies to define the clinical implications of DNSs in endodontic surgery. Full article
Show Figures

Figure 1

16 pages, 481 KB  
Review
Resident Training in Minimally Invasive Spine Surgery: A Scoping Review
by Michael C. Oblich, James G. Lyman, Rishi Jain, Dillan Prasad, Sharbel Romanos, Nader Dahdaleh, Najib E. El Tecle and Christopher S. Ahuja
Brain Sci. 2025, 15(9), 936; https://doi.org/10.3390/brainsci15090936 - 28 Aug 2025
Viewed by 276
Abstract
Background/Objectives: Minimally invasive spine surgery (MISS) is complex and requires proficiency with a variety of technological and robotic modalities. Acquiring these skills is a long and involved process, often with a steep learning curve. This paper seeks to characterize the state of [...] Read more.
Background/Objectives: Minimally invasive spine surgery (MISS) is complex and requires proficiency with a variety of technological and robotic modalities. Acquiring these skills is a long and involved process, often with a steep learning curve. This paper seeks to characterize the state of MISS training in neurosurgical and orthopedic residency programs, focusing on their effectiveness at minimizing substantial learning curves in the field, as well as highlighting potential areas for future growth. Methods: We conducted a scoping review of the PubMed, Scopus, and Embase databases utilizing the PRISMA extension for scoping reviews. Results: Of the 100 studies initially identified, 16 were included in our final analysis. MISS training types could be broadly grouped into four categories: virtual simulation (including AR and VR), physical models, hybrid didactic and simulation, and mentored training. Training with these modalities led to improvements in resident performance across multiple different MISS techniques, including percutaneous pedicle screw fixation, MIS dural repair, MIS-TLIF, MIS-LLIF, MIS-ULBD, microscopic discectomy/disk herniation repair, percutaneous needle placement, and surgical navigation. Specific improvements included reduced error rate, operation time, and fluoroscopy exposure, as well as increased procedural knowledge, accuracy, and confidence. Conclusions: The incorporation of MISS training modalities in spine surgery residency leads to increases in simulated performance and could serve as a means of overcoming significant learning curves in the field. Full article
(This article belongs to the Special Issue Neurosurgery: Minimally Invasive Surgery in Brain and Spine)
Show Figures

Figure 1

32 pages, 15103 KB  
Article
3D Printing and Virtual Surgical Planning in Craniofacial and Thoracic Surgery: Applications to Personalised Medicine
by Freddy Patricio Moncayo-Matute, Jhonatan Heriberto Vázquez-Albornoz, Efrén Vázquez-Silva, Ana Julia Hidalgo-Bravo, Paúl Bolívar Torres-Jara and Diana Patricia Moya-Loaiza
J. Pers. Med. 2025, 15(9), 397; https://doi.org/10.3390/jpm15090397 - 25 Aug 2025
Viewed by 537
Abstract
Background/Objectives: The application of additive manufacturing in medicine, and specifically in personalised medicine, has achieved notable development. This article aims to present the results and benefits of applying a comprehensive methodology to simulate, plan, and manufacture customised three-dimensional medical prosthetic devices for use [...] Read more.
Background/Objectives: The application of additive manufacturing in medicine, and specifically in personalised medicine, has achieved notable development. This article aims to present the results and benefits of applying a comprehensive methodology to simulate, plan, and manufacture customised three-dimensional medical prosthetic devices for use in surgery to restore bone structures with congenital and acquired malformations. Methods: To digitally reconstruct a bone structure in three dimensions from a medical image, a segmentation process is developed to correlate the anatomical model. Then, this model is filtered using a post-processing step to generate stereolithography (STL) files, which are rendered using specialised software. The segmentation of tomographic images is achieved by the specific intensity selection, facilitating the analysis of compact and soft tissues within the anatomical region of interest. With the help of a thresholding algorithm, a three-dimensional digital model of the anatomical structure is obtained, ready for printing the required structure. Results: The described cases demonstrate that the use of anatomical test models, cutting guides, and customised prostheses reduces surgical time and hospital stay, and achieves better aesthetic and functional results. Using materials such as polylactic acid (PLA) for presurgical models, appropriate resins for cutting guides, and biocompatible materials such as polyether ether ketone (PEEK) or polymethylmethacrylate (PMMA) for prostheses, the described improvements are achieved. Conclusions: The achievements attained demonstrate the feasibility of applying these techniques, their advantages and their accessibility in Ecuador. They also reinforce the ideas of personalised medicine in the search for medical treatments and procedures tailored to the needs of each patient. Full article
(This article belongs to the Section Personalized Critical Care)
Show Figures

Graphical abstract

19 pages, 7519 KB  
Article
A Shared Control Approach to Robot-Assisted Cataract Surgery Training for Novice Surgeons
by Balint Varga and Michael Poncelet
Sensors 2025, 25(16), 5165; https://doi.org/10.3390/s25165165 - 20 Aug 2025
Viewed by 406
Abstract
This paper proposes a novel virtual-fixtures-based shared control concept for eye surgery systems focusing on cataract procedures, one of the most common ophthalmic surgeries. Current research on haptic force feedback aims to enhance manipulation capabilities by integrating teleoperated medical robots. Our proposed concept [...] Read more.
This paper proposes a novel virtual-fixtures-based shared control concept for eye surgery systems focusing on cataract procedures, one of the most common ophthalmic surgeries. Current research on haptic force feedback aims to enhance manipulation capabilities by integrating teleoperated medical robots. Our proposed concept utilizes teleoperated medical robots to improve the training of young surgeons by providing haptic feedback during cataract operations based on geometrical virtual fixtures. The core novelty of our concept is the active guidance to the incision point generated directly from the geometrical representation of the virtual fixtures, and, therefore, it is computationally efficient. Furthermore, novel virtual fixtures are introduced for the posterior corneal surface of the eye during the cataract operation. The concept is tested in a human-in-the-loop pilot study, where non-medical engineering students participated. The results indicate that the proposed shared control system is helpful for the test subjects. Therefore, the inclusion of the proposed concept can be beneficial for the training of non-experienced surgeons. Full article
(This article belongs to the Special Issue Advanced Sensing for Surgical Robots and Devices)
Show Figures

Figure 1

17 pages, 1381 KB  
Article
Maxillomandibular Advancement (MMA) Surgery Improves Obstructive Sleep Apnea: CAD/CAM vs. Traditional Surgery
by Vincenzo Antonio Marcelli, Roberto Pistilli, Flavio Andrea Govoni, Silvio Di Nezza, Luca Tarascio, Filippo Pica, Luca De Paolis, Alessandra Celebrini, Vinicio Magliacani, Gianluca Bellocchi and Antonio Scarano
Appl. Sci. 2025, 15(16), 9149; https://doi.org/10.3390/app15169149 - 20 Aug 2025
Viewed by 790
Abstract
Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized by a reduction or complete interruption of airflow during sleep, with episodes lasting at least 10 s. In severe cases, blood oxygen saturation can drop significantly, reaching levels as low as 40%. The [...] Read more.
Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized by a reduction or complete interruption of airflow during sleep, with episodes lasting at least 10 s. In severe cases, blood oxygen saturation can drop significantly, reaching levels as low as 40%. The aim of this study was to compare CAD/CAM-assisted maxillomandibular advancement (MMA) with traditional surgical techniques in the treatment of obstructive sleep apnea (OSA). We conducted a retrospective analysis of patients who underwent maxillomandibular advancement (MMA) for obstructive sleep apnea (OSA), all operated on consecutively by the same surgeon between 2022 and 2024 at the Maxillofacial Surgery of Policlinico Hospital San Camillo-Forlanini, Rome, Italy. This study included 18 patients with severe obstructive sleep apnea syndrome (OSAS) who underwent maxillomandibular advancement (MMA) surgery. The patients had a mean age of 38 years; 11 were male and 7 were female. Patients were divided into two groups: Group A, treated using a CAD/CAM-assisted surgical approach (five male and four female), and Group B, treated with conventional surgical techniques (six male and three female). Results: The comparison between preoperative and postoperative CT scans, along with 3D reconstructions using dedicated software, demonstrated a significant increase in airway volume following the skeletal repositioning. Notably, airway volume increased from 19.25 ± 0.5 mm3 to 26.14 ± 1.264 mm3 in group A and 20.564 ± 0.71 mm3 to 25.425 ±1.103 mm3 in group B. Conclusion: No significant differences were observed between the CAD/CAM-assisted and conventional surgical techniques for maxillomandibular advancement (MMA) in the treatment of severe obstructive sleep apnea (OSA). Both approaches led to a reduction in the apnea–hypopnea index (AHI) and an increase in posterior airway space (PAS). However, the use of software and digital planning through CAD/CAM technology allows for greater precision and shorter operative times, making the procedure more efficient overall. Full article
(This article belongs to the Special Issue Oral Diseases: Diagnosis and Therapy)
Show Figures

Figure 1

14 pages, 591 KB  
Review
Artificial Intelligence and Extended Reality in the Training of Vascular Surgeons: A Narrative Review
by Joanna Halman, Sonia Tencer and Mariusz Siemiński
Med. Sci. 2025, 13(3), 126; https://doi.org/10.3390/medsci13030126 - 12 Aug 2025
Viewed by 543
Abstract
Background: The rapid shift from open to endovascular techniques in vascular surgery has significantly decreased trainee exposure to high-stakes open procedures. Simulation-based training, especially that incorporating virtual reality (VR) and artificial intelligence (AI), provides a promising way to bridge this skill gap. Objective: [...] Read more.
Background: The rapid shift from open to endovascular techniques in vascular surgery has significantly decreased trainee exposure to high-stakes open procedures. Simulation-based training, especially that incorporating virtual reality (VR) and artificial intelligence (AI), provides a promising way to bridge this skill gap. Objective: This narrative review aims to assess the current evidence on the integration of extended reality (XR) and AI into vascular surgeon training, focusing on technical skill development, performance evaluation, and educational results. Methods: We reviewed the literature on AI- and XR-enhanced surgical education across various specialties, focusing on validated cognitive learning theories, simulation methods, and procedure-specific training. This review covered studies on general, neurosurgical, orthopedic, and vascular procedures, along with recent systematic reviews and consensus statements. Results: VR-based training speeds up skill learning, reduces procedural mistakes, and enhances both technical and non-technical skills. AI-powered platforms provide real-time feedback, performance benchmarking, and objective skill evaluations. In vascular surgery, high-fidelity simulations have proven effective for training in carotid artery stenting, EVAR, rAAA management, and peripheral interventions. Patient-specific rehearsal, haptic feedback, and mixed-reality tools further improve realism and readiness. However, challenges like cost, data security, algorithmic bias, and the absence of long-term outcome data remain. Conclusions: XR and AI technologies are transforming vascular surgical education by providing scalable, evidence-based alternatives to traditional training methods. Future integration into curricula should focus on ethical use, thorough validation, and alignment with cognitive learning frameworks. A structured approach that combines VR, simulation, cadaver labs, and supervised practice may be the safest and most effective way to train the next generation of vascular surgeons. Full article
(This article belongs to the Section Cardiovascular Disease)
Show Figures

Figure 1

21 pages, 838 KB  
Systematic Review
Systematic Review of Hip Fractures and Regional Anesthesia: Efficacy of the Main Blocks and Comparison for a Multidisciplinary and Effective Approach for Patients in the Hospital Setting of Anesthesiology and Resuscitation
by Enrique González Marcos, Inés Almagro Vidal, Rodrigo Arranz Pérez, Julio Morillas Martinez, Amalia Díaz Viudes, Ana Rodríguez Martín, Alberto José Gago Sánchez, Carmen García De Leániz and Daniela Rodriguez Marín
Surg. Tech. Dev. 2025, 14(3), 27; https://doi.org/10.3390/std14030027 - 6 Aug 2025
Viewed by 569
Abstract
Background: Hip fractures represent a major clinical challenge, particularly in elderly and frail patients, where postoperative pain control must balance effective analgesia with motor preservation to facilitate early mobilization. Various regional anesthesia techniques are used in this setting, including the pericapsular nerve group [...] Read more.
Background: Hip fractures represent a major clinical challenge, particularly in elderly and frail patients, where postoperative pain control must balance effective analgesia with motor preservation to facilitate early mobilization. Various regional anesthesia techniques are used in this setting, including the pericapsular nerve group (PENG) block, fascia iliaca compartment block (FICB), femoral nerve block (FNB), and quadratus lumborum block (QLB), yet optimal strategies remain debated. Objectives: To systematically review the efficacy, safety, and clinical applicability of major regional anesthesia techniques for pain management in hip fractures, including considerations of fracture type, surgical approach, and functional outcomes. Methods: A systematic literature search was conducted following PRISMA 2020 guidelines in PubMed, Scopus, Web of Science, and the virtual library of the Hospital Central de la Defensa “Gómez Ulla” up to March 2025. Inclusion criteria were RCTs, systematic reviews, and meta-analyses evaluating regional anesthesia for hip surgery in adults. Risk of bias in RCTs was assessed using RoB 2.0, and certainty of evidence was evaluated using the GRADE approach. Results: Twenty-nine studies were included, comprising RCTs, systematic reviews, and meta-analyses. PENG block demonstrated superior motor preservation and reduced opioid consumption compared to FICB and FNB, particularly in intracapsular fractures and anterior surgical approaches. FICB and combination strategies (PENG+LFCN or sciatic block) may provide broader analgesic coverage in extracapsular fractures or posterior approaches. The overall risk of bias across RCTs was predominantly low, and certainty of evidence ranged from moderate to high for key outcomes. No significant safety concerns were identified across techniques, although reporting of adverse events was inconsistent. Conclusions: PENG block appears to offer a favorable balance of analgesia and motor preservation in hip fracture surgery, particularly for intracapsular fractures. For extracapsular fractures or posterior approaches, combination strategies may enhance analgesic coverage. Selection of block technique should be tailored to fracture type, surgical approach, and patient-specific functional goals. Full article
Show Figures

Figure 1

11 pages, 1461 KB  
Article
Comparative Analysis of Orbital Morphology Accuracy in 3D Models Based on Cone-Beam and Fan-Beam Computed Tomography Scans for Reconstructive Planning
by Natalia Bielecka-Kowalska, Bartosz Bielecki-Kowalski and Marcin Kozakiewicz
J. Clin. Med. 2025, 14(15), 5541; https://doi.org/10.3390/jcm14155541 - 6 Aug 2025
Viewed by 333
Abstract
Background/Objectives: Orbital reconstruction remains one of the most demanding procedures in maxillofacial surgery. It requires not only precise anatomical knowledge but also poses multiple intraoperative challenges. Limited surgical visibility—especially in transconjunctival or transcaruncular approaches—demands exceptional precision from the surgeon. At the same time, [...] Read more.
Background/Objectives: Orbital reconstruction remains one of the most demanding procedures in maxillofacial surgery. It requires not only precise anatomical knowledge but also poses multiple intraoperative challenges. Limited surgical visibility—especially in transconjunctival or transcaruncular approaches—demands exceptional precision from the surgeon. At the same time, the complex anatomical structure of the orbit, its rich vascularization and innervation, and the risk of severe postoperative complications—such as diplopia, sensory deficits, impaired ocular mobility, or in the most serious cases, post-traumatic blindness due to nerve injury or orbital compartment syndrome—necessitate the highest level of surgical accuracy. In this context, patient-specific implants (PSIs), commonly fabricated from zirconium oxide or ultra-high-density polyethylene, have become invaluable. Within CAD-based reconstructive planning, especially for orbital implants, critical factors include the implant’s anatomical fit, passive stabilization on intact bony structures, and non-interference with orbital soft tissues. Above all, precise replication of the orbital dimensions is essential for optimal clinical outcomes. This study compares the morphological accuracy of orbital structures based on anthropometric measurements from 3D models generated from fan-beam computed tomography (FBCT) and cone-beam computed tomography (CBCT). Methods: A cohort group of 500 Caucasian patients aged 8 to 88 years was analyzed. 3D models of the orbits were generated from FBCT and CBCT scans. Anthropometric measurements were taken to evaluate the morphological accuracy of the orbital structures. The assessed parameters included orbital depth, orbital width, the distance from the infraorbital rim to the infraorbital foramen, the distance between the piriform aperture and the infraorbital foramen, and the distance from the zygomatico-orbital foramen to the infraorbital rim. Results: Statistically significant differences were observed between virtual models derived from FBCT and those based on CBCT in several key parameters. Discrepancies were particularly evident in measurements of orbital depth, orbital width, the distance from the infraorbital rim to the infraorbital foramen, the distance between the piriform aperture and the infraorbital foramen, and the distance from the zygomatico-orbital foramen to the infraorbital rim. Conclusions: The statistically significant discrepancies in selected orbital dimensions—particularly in regions of so-called thin bone—demonstrate that FBCT remains the gold standard in the planning and design of CAD/CAM patient-specific orbital implants. Despite its advantages, including greater accessibility and lower radiation dose, CBCT shows limited reliability in the context of orbital and infraorbital reconstruction planning. Full article
(This article belongs to the Special Issue State-of-the-Art Innovations in Oral and Maxillofacial Surgery)
Show Figures

Figure 1

14 pages, 871 KB  
Article
Evaluation of Deviations Produced by Soft Tissue Fitting in Virtually Planned Orthognathic Surgery
by Álvaro Pérez-Sala, Pablo Montes Fernández-Micheltorena, Miriam Bobadilla, Ricardo Fernández-Valadés Gámez, Javier Martínez Goñi, Ángela Villanueva, Iñigo Calvo Archanco, José Luis Del Castillo Pardo de Vera, José Luis Cebrián Carretero, Carlos Navarro Cuéllar, Ignacio Navarro Cuellar, Gema Arenas, Ana López López, Ignacio M. Larrayoz and Rafael Peláez
Appl. Sci. 2025, 15(15), 8478; https://doi.org/10.3390/app15158478 - 30 Jul 2025
Viewed by 708
Abstract
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital [...] Read more.
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital assessment using computer-aided design (CAD) and computer-aided manufacturing (CAM) tools enhances surgical predictability. However, limitations in soft tissue simulation often require surgeon input to optimize aesthetic results and minimize surgical impact. This study aimed to evaluate the accuracy of virtual surgery planning (VSP) by analyzing the relationship between planning deviations and surgical satisfaction. A single-center, retrospective study was conducted on 16 patients who underwent OS at San Pedro University Hospital of La Rioja. VSP was based on CT scans using Dolphin Imaging software (v12.0, Patterson Dental, St. Paul, MN, USA) and surgeries were guided by VSP-designed occlusal splints. Outcomes were assessed using the Orthognathic Quality of Life (OQOL) questionnaire and deviations were measured through pre- and postoperative imaging. The results showed high satisfaction scores and good overall outcomes, despite moderate deviations from the virtual plan in many cases, particularly among Class II patients. A total of 63% of patients required VSP modifications due to poor soft tissue fitting, with 72% of these being Class II DFDs. Most deviations involved less maxillary advancement than planned, while maintaining optimal occlusion. This suggests that VSP may overestimate advancement needs, especially in Class II cases. No significant differences in satisfaction were observed between patients with low (<2 mm) and high (>2 mm) deviations. These findings support the use of VSP as a valuable planning tool for OS. However, surgeon experience remains essential, especially in managing soft tissue behavior. Improvements in soft tissue prediction are needed to enhance accuracy, particularly for Class II DFDs. Full article
(This article belongs to the Special Issue Intelligent Medicine and Health Care, 2nd Edition)
Show Figures

Figure 1

23 pages, 1118 KB  
Systematic Review
Management of Preoperative Anxiety via Virtual Reality Technology: A Systematic Review
by Elina Christiana Alimonaki, Anastasia Bothou, Athina Diamanti, Anna Deltsidou, Styliani Paliatsiou, Grigorios Karampas and Giannoula Kyrkou
Nurs. Rep. 2025, 15(8), 268; https://doi.org/10.3390/nursrep15080268 - 25 Jul 2025
Viewed by 768
Abstract
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care [...] Read more.
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care is drawn up with new data resulting from the evolution of technology to upgrade the procedures that need improvement. According to the international literature, a factor considered to be of major importance is high preoperative anxiety and its effects on the patient’s postoperative course. High preoperative anxiety is postoperatively responsible for prolonged hospital stays, increased postoperative pain, decreased effect of anesthetic agents, increased amounts of analgesics, delayed healing of surgical wounds, and increased risk of infections. The use of Virtual Reality technology appears as a new method of managing preoperative anxiety. Objective: This study investigates the effect and effectiveness of Virtual Reality (VR) technology in managing preoperative anxiety in adult patients. Methods: A literature review was performed on 193 articles, published between 2017 and 2024, sourced from the scientific databases PubMed and Cochrane, as well as the trial registry ClinicalTrials, with a screening and exclusion process to meet the criterion of investigating VR technology’s effectiveness in managing preoperative anxiety in adult patients. This systematic review was conducted under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. Results: Out of the 193 articles, 29 were selected. All articles examined the efficacy of VR in adult patients (≥18) undergoing various types of surgery. The studies represent a total of 2.354 participants from 15 countries. There are two types of VR applications: distraction therapy and patient education. From the studies, 14 (48%) used the distraction VR intervention, 14 (48%) used the training VR intervention, and 1 (4%) used both VR interventions, using a range of validated anxiety scales such as the STAI, VAS-A, APAIS, and HADS. Among the 29 studies reviewed, 25 (86%) demonstrated statistically significant reductions in preoperative anxiety levels following the implementation of VR interventions. VR technology appears to manage preoperative anxiety effectively. It is a non-invasive and non-pharmacological intervention with minimal side effects. Conclusions: Based on the review, the management of preoperative anxiety with VR technology shows good levels of effectiveness. Further investigation of the efficacy by more studies and randomized controlled trials, with a larger patient population, is recommended to establish and universally apply VR technology in the preoperative care process as an effective method of managing preoperative anxiety. Full article
Show Figures

Figure 1

15 pages, 1800 KB  
Article
Digital Orthodontic Setups in Orthognathic Surgery: Evaluating Predictability and Precision of the Workflow in Surgical Planning
by Olivier de Waard, Frank Baan, Robin Bruggink, Ewald M. Bronkhorst, Anne Marie Kuijpers-Jagtman and Edwin M. Ongkosuwito
J. Clin. Med. 2025, 14(15), 5270; https://doi.org/10.3390/jcm14155270 - 25 Jul 2025
Viewed by 548
Abstract
Background: Inadequate presurgical planning is a key contributor to suboptimal outcomes in orthognathic surgery. This study aims to assess the accuracy of a digital surgical planning workflow conducted prior to any orthodontic intervention. Methods: Digital planning was performed for 26 patients before orthodontic [...] Read more.
Background: Inadequate presurgical planning is a key contributor to suboptimal outcomes in orthognathic surgery. This study aims to assess the accuracy of a digital surgical planning workflow conducted prior to any orthodontic intervention. Methods: Digital planning was performed for 26 patients before orthodontic treatment (T0) and compared to the actual preoperative planning (T1). Digitized plaster casts were merged with CBCT data and converted to orthodontic setups to create a 3D virtual head model. After voxel-based registration of T0 and T1, dental arches were virtually osteotomized and repositioned according to planned outcomes. These T0 segments were then aligned with T1 planning using bony landmarks of the maxilla. Anatomical landmarks were used to construct virtual triangles on maxillary and mandibular segments, enabling assessment of positional and orientational differences. Transformations between T0 and T1 were translated into clinically meaningful metrics. Results: Significant differences were found between T0 and T1 at the dental level. T1 exhibited a greater clockwise rotation of the dental maxilla (mean: 2.85°) and a leftward translation of the mandibular dental arch (mean: 1.19 mm). In SARME cases, the bony mandible showed larger anti-clockwise roll differences. Pitch variations were also more pronounced in maxillary extraction cases, with both the dental maxilla and bony mandible demonstrating increased clockwise rotations. Conclusions: The proposed orthognathic surgical planning workflow shows potential for simulating mandibular outcomes but lacks dental-level accuracy, especially in maxillary anterior torque. While mandibular bony outcome predictions align reasonably with pretreatment planning, notable discrepancies exceed clinically acceptable thresholds. Current accuracy limits routine use; further refinement and validation in larger, homogeneous patient groups are needed to enhance clinical reliability and applicability. Full article
(This article belongs to the Special Issue Orthodontics: Current Advances and Future Options)
Show Figures

Figure 1

18 pages, 2593 KB  
Article
Accuracy of Drill Sleeve Housing in 3D-Printed and Milled Implant Surgical Guides: A 3D Analysis Considering Machine Type, Layer Thickness, Sleeve Position, and Steam Sterilization
by Anna Seidel, Kai Zerrahn, Manfred Wichmann and Ragai Edward Matta
Bioengineering 2025, 12(8), 799; https://doi.org/10.3390/bioengineering12080799 - 25 Jul 2025
Viewed by 454
Abstract
Successful dental implant therapy relies on accurate planning and placement, e.g., through static, computer-aided implant surgery using CAD/CAM-fabricated surgical guides. This study examined production methods’ influence on surgical guide sleeve housing geometry. A model with two edentulous spaces was digitized using intraoral scanning [...] Read more.
Successful dental implant therapy relies on accurate planning and placement, e.g., through static, computer-aided implant surgery using CAD/CAM-fabricated surgical guides. This study examined production methods’ influence on surgical guide sleeve housing geometry. A model with two edentulous spaces was digitized using intraoral scanning and CBCT, and two virtually positioned implants were planned. Ten guides per group were produced using milling (MCX5), DLP printing (ASIGA and SHERA), and SLA printing (FORM), printing with 50 µm and 100 µm layers each. Each guide (n = 70) was then digitized using an industrial scanner before and after sterilization. Superimposition of the actual guide data with the reference data allowed for evaluation of deviations at the drill sleeve housing along the x-, y-, z-, and dxyz-axes. Descriptive and statistical evaluation was performed (significance level: p ≤ 0.0125). Significant differences existed among the production methods: Milling and SLA showed higher deviations than the DLP group (p < 0.001). Milled guides post-sterilization showed the highest deviations (0.352 ± 0.08 mm), while one DLP printer at 50 μm layer thickness showed lowest deviations (0.091 ± 0.04 mm). The layer thickness was insignificant, whereas sterilization increased deviation (p < 0.001). DLP produced the most precise implant surgical guides. All 3D printers were suitable for fabricating clinically acceptable surgical guides. Full article
Show Figures

Figure 1

12 pages, 5900 KB  
Technical Note
Digitally-Driven Surgical Guide for Alveoloplasty Prior to Immediate Denture Placement
by Zaid Badr, Jonah Jaworski, Sofia D’Acquisto and Manal Hamdan
Dent. J. 2025, 13(8), 333; https://doi.org/10.3390/dj13080333 - 22 Jul 2025
Viewed by 561
Abstract
Objective: This article presents a step-by-step digital technique for fabricating a 3D-printed surgical guide to assist in alveoloplasty for immediate denture placement. Methods: The workflow integrates intraoral scanning, virtual tooth extraction, digital soft tissue modeling, and additive manufacturing to produce a customized guide [...] Read more.
Objective: This article presents a step-by-step digital technique for fabricating a 3D-printed surgical guide to assist in alveoloplasty for immediate denture placement. Methods: The workflow integrates intraoral scanning, virtual tooth extraction, digital soft tissue modeling, and additive manufacturing to produce a customized guide with an occlusal window and buccal slot, along with a verification stent. Results: This method ensures precise ridge recontouring and verification, enhancing surgical predictability and prosthetic fit. Conclusions: Unlike traditional surgical guides based on conventional casts or manual fabrication, this fully digital approach offers a practical and replicable protocol that bridges digital planning and clinical execution. By improving surgical precision, reducing operative time, and ensuring optimal denture fit, this technique represents a significant advancement in guided pre-prosthetic surgery. Full article
(This article belongs to the Special Issue New Trends in Digital Dentistry)
Show Figures

Figure 1

Back to TopTop