Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,261)

Search Parameters:
Keywords = volatiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4637 KB  
Article
Multi-Component Botanical Crude Extracts Improve Egg and Meat Quality in Late-Laying Hens Through Gut Microbiota Modulation
by Xiaofang Wei, Huixin Liu, Fang Chen, Yumiao Liang, Wenwen Yang, Wenjing Liang, Ting Xu, Hongjie Hu, Xiuyu Li, Hongbin Si and Shuibao Shen
Foods 2025, 14(20), 3480; https://doi.org/10.3390/foods14203480 (registering DOI) - 12 Oct 2025
Abstract
Laying hens in the late laying period often experience reduced productivity and declining egg and meat quality, which limits breeding efficiency and resource utilization. This study aimed to evaluate the effects of multi-component Botanical Crude Extracts (BCEs) on egg and meat quality, metabolic [...] Read more.
Laying hens in the late laying period often experience reduced productivity and declining egg and meat quality, which limits breeding efficiency and resource utilization. This study aimed to evaluate the effects of multi-component Botanical Crude Extracts (BCEs) on egg and meat quality, metabolic health, and gut microbiota in aged laying hens. A total of 4320 hens were supplemented with 0.3% BCEs for 100 days, with evaluations at 60 and 100 days. BCE supplementation significantly enhanced egg flavor by promoting aromatic and fat-soluble volatiles and reducing odorous compounds (p < 0.05). BCEs improved yolk nutrition by enriching n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), and optimizing the n-6/n-3 ratio (p < 0.05). A moderate reduction in amino acids was observed, which may reduce bitterness and ammonia burden (0.05 ≤ p < 0.10, trend). In muscle, BCEs improved protein–fat distribution, increased intramuscular fat, and enhanced flavor-related metabolites, significantly improving meat quality of culled hens (p < 0.05). BCEs also reshaped gut microbiota, reducing harmful taxa and promoting short-chain fatty acid and aromatic metabolite biosynthesis (p < 0.05). Serum metabolomics revealed modulation of AMPK, calcium, and cholesterol pathways, improving antioxidant capacity and lipid regulation (p < 0.05). Correlation analyses linked beneficial bacteria and metabolites with yolk DHA levels and flavor (p < 0.05). Overall, BCEs enhanced egg and meat quality and physiological health, providing guidance for functional feed strategies in aged laying hens. Full article
(This article belongs to the Section Meat)
17 pages, 6304 KB  
Article
Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC
by Sebastián Flández, Rolando Rubilar-Torrealba, Karime Chahuán-Jiménez, Hanns de la Fuente-Mella and Claudio Elórtegui-Gómez
Mathematics 2025, 13(20), 3265; https://doi.org/10.3390/math13203265 (registering DOI) - 12 Oct 2025
Abstract
The present research proposes a methodology for portfolio construction that integrates the Black–Litterman model with expected returns generated through simulations under dynamic Capital Asset Pricing Model (CAPM) with conditional betas, estimated via Approximate Bayesian Computation Markov Chain Monte Carlo (ABC-MCMC). Bayesian estimation enables [...] Read more.
The present research proposes a methodology for portfolio construction that integrates the Black–Litterman model with expected returns generated through simulations under dynamic Capital Asset Pricing Model (CAPM) with conditional betas, estimated via Approximate Bayesian Computation Markov Chain Monte Carlo (ABC-MCMC). Bayesian estimation enables the incorporation of volatility regimes and the adjustment of each asset’s sensitivity to the market, thereby delivering expected returns that more accurately reflect the structural state of the assets compared to historical methods. This strategy is applied to the United States stock market, and the results suggest that the Black–Litterman portfolio performs competitively against portfolios optimised using the classic Markowitz model, even maintaining the same fixed weights throughout the month. Specifically, it has been demonstrated to outperform the minimum variance portfolio with regard to cumulative return and attains a Sharpe ratio that approaches the Markowitz maximum Sharpe portfolio, although it does so with a distinct and more concentrated asset allocation. It has been observed that, while the maximum return portfolio attains the highest absolute profit, it does so at the expense of significantly higher volatility. Full article
22 pages, 12659 KB  
Article
Spatiotemporal Dynamics and Land Cover Drivers of Herbaceous Aboveground Biomass in the Yellow River Delta from 2001 to 2022
by Shuo Zhang, Wanjuan Song, Ni Huang, Feng Tang, Yuelin Zhang, Chang Liu, Yibo Liu and Li Wang
Remote Sens. 2025, 17(20), 3418; https://doi.org/10.3390/rs17203418 (registering DOI) - 12 Oct 2025
Abstract
Frequent channel migrations of the Yellow River, coupled with increasing human disturbances, have driven significant land cover changes in the Yellow River Delta (YRD) over time. Accurate estimation of aboveground biomass (AGB) and clarification of the impact of land cover changes on AGB [...] Read more.
Frequent channel migrations of the Yellow River, coupled with increasing human disturbances, have driven significant land cover changes in the Yellow River Delta (YRD) over time. Accurate estimation of aboveground biomass (AGB) and clarification of the impact of land cover changes on AGB are crucial for monitoring vegetation dynamics and supporting ecological management. However, field-based biomass samples are often time-consuming and labor-intensive, and the quantity and quality of such samples greatly affect the accuracy of AGB estimation. This study developed a robust AGB estimation framework for the YRD by synthesizing 4717 field-measured samples from the published scientific literature and integrating two critical ecological indicators: leaf area index (LAI) and length of growing season (LGS). A random forest (RF) model was employed to estimate AGB for the YRD from 2001 to 2022, achieving high accuracy (R2 = 0.74). The results revealed a continuous spatial expansion of AGB over the past two decades, with higher biomass consistently observed in western cropland and along the Yellow River, whereas lower biomass levels were concentrated in areas south of the Yellow River. AGB followed a fluctuating upward trend, reaching a minimum of 204.07 g/m2 in 2007, peaking at 230.79 g/m2 in 2016, and stabilizing thereafter. Spatially, western areas showed positive trends, with an average annual increase of approximately 10 g/m2, whereas central and coastal zones exhibited localized declines of around 5 g/m2. Among the changes in land cover, cropland and wetland changes were the main contributors to AGB increases, accounting for 54.2% and 52.67%, respectively. In contrast, grassland change exhibited limited or even suppressive effects, contributing −6.87% to the AGB change. Wetland showed the greatest volatility in the interaction between area change and biomass density change, which is the most uncertain factor in the dynamic change in AGB. Full article
Show Figures

Figure 1

21 pages, 723 KB  
Review
A Review of the Key Impacts of Deforestation and Wildfires on Water Resources with Regard to the Production of Drinking Water
by Olivier Banton, Sylvie St-Pierre, Guillaume Banton, Nicolas Laures and Anne Triganon
Hydrology 2025, 12(10), 271; https://doi.org/10.3390/hydrology12100271 (registering DOI) - 12 Oct 2025
Abstract
Deforestation and wildfires drastically impact vegetation cover, consequently affecting water dynamics. These hazards alter the different components of the water cycle, including evapotranspiration, runoff, infiltration, and groundwater recharge. Overall, runoff increases while infiltration and groundwater recharge decrease. Furthermore, these hazards significantly alter the [...] Read more.
Deforestation and wildfires drastically impact vegetation cover, consequently affecting water dynamics. These hazards alter the different components of the water cycle, including evapotranspiration, runoff, infiltration, and groundwater recharge. Overall, runoff increases while infiltration and groundwater recharge decrease. Furthermore, these hazards significantly alter the chemistry of both surface water and groundwater. The main changes to water quality relate to turbidity, bacterial load, mineralization and nutrients. Forest fires can also release contaminants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Other contaminants can be introduced by products used in firefighting, such as retardants and perfluoroalkyl substances (PFAS). This paper reviews the impact of deforestation and wildfires on water resources, especially with a view to their use as raw water for drinking water production. The paper identifies the magnitude of the changes induced in water quantity and quality. Even if the results are climate- and site-specific, they provide an indication of the possible magnitude of these impacts. Finally, the various changes brought about by these hazards are ranked according to their potential impact on drinking water production. Full article
20 pages, 3306 KB  
Article
Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations
by Nikolina Račić, Stanko Ružičić, Gordana Pehnec, Ivana Jakovljević, Zdravka Sever Štrukil, Jasmina Rinkovec, Silva Žužul, Iva Smoljo, Željka Zgorelec and Mario Lovrić
Toxics 2025, 13(10), 866; https://doi.org/10.3390/toxics13100866 (registering DOI) - 12 Oct 2025
Abstract
Understanding how atmospheric pollutants interact with soil pollution is essential for assessing long-term environmental and human health risks. This study compares concentrations of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) in PM10 and surface soil near air quality monitoring stations [...] Read more.
Understanding how atmospheric pollutants interact with soil pollution is essential for assessing long-term environmental and human health risks. This study compares concentrations of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) in PM10 and surface soil near air quality monitoring stations in Zagreb, Croatia. While previous work identified primary emission sources affecting PM10 composition in the area, this study extends the analysis to investigate potential pollutant transfer and accumulation in soils. Multivariate statistical tools, including correlation analysis and principal component analysis (PCA), were employed to gain a deeper understanding of the sources and behavior of pollutants. Results reveal significant correlations between air and soil concentrations for several PTEs and PAHs, particularly when air pollutant data are averaged over extended periods (up to 6 months), indicating cumulative deposition effects. Σ11PAH concentrations in soils ranged from 1.2 to 524 µg/g, while mean BaP in PM10 was 2.2 ng/m3 at traffic-affected stations. Strong positive air–soil correlations were found for Pb and Cu, whereas PAH associations strengthened at longer averaging windows (3–6 months), especially at 10 cm depth. Seasonal variations were observed, with stronger associations in autumn, reflecting intensified emissions and atmospheric conditions that facilitate pollutant transfer. PCA identified similar pollutant groupings in both air and soil matrices, suggesting familiar sources such as traffic emissions, industrial activities, and residential heating. The integrated PCA approach, which jointly analyzed air and soil pollutants, showed coherent behaviour for heavier PAHs and several PTEs (e.g., Pb, Cu), as well as divergence in more volatile or mobile species (e.g., Flu, Zn). Spatial differences among monitoring sites show localized influences on pollutant accumulation. Furthermore, this work demonstrates the value of coordinated air–soil monitoring in urban environments and provides an understanding of pollutant distributions across different components of the environment. Full article
Show Figures

Graphical abstract

24 pages, 14492 KB  
Article
Inhibition Mechanism of Calcium Hydroxide on Arsenic Volatilization During Sintering of Contaminated Excavated Soils
by Xu Li, Yu Jin, Yaocheng Wang, Zhijun Dong and Weipeng Feng
Sustainability 2025, 17(20), 9027; https://doi.org/10.3390/su17209027 (registering DOI) - 12 Oct 2025
Abstract
Urbanization generates large quantities of arsenic-contaminated excavated soils that pose environmental risks due to arsenic volatilization during high-temperature sintering processes. While these soils have potential for recycling into construction materials, their reuse is hindered by arsenic release. This study demonstrated calcium hydroxide (Ca(OH) [...] Read more.
Urbanization generates large quantities of arsenic-contaminated excavated soils that pose environmental risks due to arsenic volatilization during high-temperature sintering processes. While these soils have potential for recycling into construction materials, their reuse is hindered by arsenic release. This study demonstrated calcium hydroxide (Ca(OH)2) as a highly effective additive for suppressing arsenic volatilization during soil sintering, while simultaneously improving material properties. Through comprehensive characterization using inductively coupled plasma-mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and X-ray microtomography (μCT), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), results demonstrated that Ca(OH)2 addition (0.5–2 wt.%) reduces arsenic volatilization by 57% through formation of thermally stable calcium arsenate (Ca3(AsO4)2). Ca(OH)2 acted via two mechanisms: (a) chemical immobilization through Ca-As-O compound formation, (b) physical encapsulation in a calcium-aluminosilicate matrix during liquid-phase sintering, and (c) pH buffering that maintains arsenic in less volatile forms. Optimal performance was achieved at 0.5% Ca(OH)2, yielding 9.14 MPa compressive strength (29% increase) with minimal arsenic leaching (<110 ppb). Microstructural analysis showed Ca(OH)2 promoted densification while higher doses increased porosity. This work provides a practical solution for safe reuse of arsenic-contaminated soils, addressing both environmental concerns and material performance requirements for construction applications. Full article
Show Figures

Figure 1

20 pages, 2113 KB  
Article
Evaluating the Influence of Two Different Red Wines on the Physicochemical Properties, Volatile Compound Profiles, and Sensory Attributes of Wine-Soaked Pressed Cheeses
by Paulina Freire, Daniel Olmos, Miguel A. Pedroza, Jack Adamson, Reem Elkhalil, Madison Atwood, Justin P. Miller-Schulze and Carmen C. Licon
Foods 2025, 14(20), 3475; https://doi.org/10.3390/foods14203475 (registering DOI) - 12 Oct 2025
Abstract
This study evaluated the effects of wine-soaking on cow’s milk pressed cheese properties and developed a standardized cheesemaking procedure. Cheese was soaked in Cabernet Sauvignon and Alicante Bouschet red wines for two soaking periods of four days after the brining process. The physicochemical, [...] Read more.
This study evaluated the effects of wine-soaking on cow’s milk pressed cheese properties and developed a standardized cheesemaking procedure. Cheese was soaked in Cabernet Sauvignon and Alicante Bouschet red wines for two soaking periods of four days after the brining process. The physicochemical, microbiological, and volatile composition were evaluated, along with consumer sensory evaluation. After 60 days of ripening, wine-soaked cheeses had statistically lower salt and moisture levels, with higher protein and fat content than the unsoaked cheeses. Alicante Bouschet cheeses have a darker purple-red color than Cabernet Sauvignon. The microbiological analysis found no significant differences across treatments and samplings. The most representative volatile compounds in wine-soaked cheeses were esters and ketones. Principal Components Analysis on the volatile compounds showed a clear separation between the two wine-soaked cheeses and the control cheese. For example, Cabernet-soaked cheese had higher levels of phenylethyl alcohol and 2-phenylethyl acetate (floral aromas), while Alicante-soaked cheese was distinguished by nonanal (fruity and grassy aroma). Sensory results showed preferences for the overall liking, flavor, and rind color for the wine-soaked cheeses over the control. Consequently, a standardized recipe for wine-soaked pressed cheese was developed, along with specific parameters for the soaking process to ensure a well-received product. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

18 pages, 5376 KB  
Article
Effects of Lacticaseibacillus casei LK-1 Fermentation on Physicochemical Properties, Chemical Compositions, Antioxidant Activities and Volatile Profiles of Pineapple Juice
by Shaodan Peng, Lian Yang, Wei Zhou, Yuan Yuan, Liangkun Liao, Xiaobing Huang, Chenghui Zhang, Xiao Gong and Jihua Li
Foods 2025, 14(20), 3474; https://doi.org/10.3390/foods14203474 (registering DOI) - 12 Oct 2025
Abstract
Lactic acid bacteria (LAB) are widely utilized in the production of various fermented foods. Lacticaseibacillus casei (Ls. casei) fermentation has been demonstrated to enhance antioxidant activity, flavor, and nutritional value. This study aimed to evaluate the physicochemical properties, proximate chemical compositions, [...] Read more.
Lactic acid bacteria (LAB) are widely utilized in the production of various fermented foods. Lacticaseibacillus casei (Ls. casei) fermentation has been demonstrated to enhance antioxidant activity, flavor, and nutritional value. This study aimed to evaluate the physicochemical properties, proximate chemical compositions, antioxidant activities, and volatile profiles of pineapple juice fermented by Ls. casei LK-1. Strain growth, physicochemical parameters, phenolics and flavonoids, carbohydrates, organic acids (by HPLC), free amino acids (FAAs), antioxidant activities (DPPH and FRAP methods), and volatile profiles (by GC-MS) of fermented pineapple juice were characterized. After 30 h of fermentation, the cell count reached 9.07 log CFU/mL. The fermentation process led to a significant decrease in pH, total soluble solids (TSS), and the a* value (p < 0.05), with an increase in the L* and b* values (p < 0.05). Lactic acid and total umami amino acids were elevated, whereas sucrose and total sweet amino acid levels remained unchanged. The fermented juice exhibited enhanced DPPH scavenging activity and FRAP values. In terms of volatile profiles, esters and terpenes were the dominant volatiles in the fermented pineapple juice. The fermentation resulted in the production of 2-heptanone, 2-undecanone, and a significant reduction in 2-furaldehyde (p < 0.05). These findings demonstrate the feasibility of using Ls. casei LK-1 for fermentation to develop novel fermented pineapple juice with improved antioxidant properties and a modified volatile profile. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Graphical abstract

21 pages, 796 KB  
Article
Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions
by Hunegnaw Abebe, Ruochen Yang, Guicong Wei, Xiaoran Feng and Yan Tu
Fermentation 2025, 11(10), 587; https://doi.org/10.3390/fermentation11100587 (registering DOI) - 12 Oct 2025
Abstract
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant [...] Read more.
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant levels, and rumen fermentation. A 60-day feeding trial with 24 AOHU lambs (Australian White × Hu) compared a control diet (0.43% NaCl) with the NaCl-supplemented group (1.71% NaCl). Digestibility trials were conducted in metabolic cages for the collection of total feces and urine. Blood samples were taken at 0, 30, and 60 days for serum analysis, and slaughter samples (liver, kidney, rumen tissue, and rumen fluid) were taken for physiological, biochemical, and histological evaluation. The NaCl alfalfa-based TMR markedly increased liver and kidney weights. The rumen muscle layer thickened in the NaCl group. The ruminal ammonia nitrogen (NH3-N), ruminal microbial crude protein (MCP) synthesis, and glucogenic/branched-chain VFAs increased, indicating enhanced proteolysis, microbial protein synthesis, and energetically efficient fermentation. Serum total protein and albumin also rose over time in the NaCl group, reflecting increased nitrogen retention, while superoxide dismutase and glutathione peroxidase activity rose considerably by day 60, reflecting increased antioxidant defense. Furthermore, nitrogen intake, digestibility, and retention were improved in the NaCl group along with augmented digestible and metabolizable energy (28.47 vs. 13.93 MJ/d and 24.68 vs. 11.58 MJ/d, respectively) and gross energy digestibility (78.13% vs. 67.10%). Although NaCl-based alfalfa TMR cannot fully emulate naturally salt-stressed forages, these results indicate that the NaCl alfalfa-based diets improved rumen fermentation, energy yields, and antioxidant enzyme activity without impairing electrolyte balance. These findings suggest that NaCl-supplemented alfalfa-based TMRs, with a salt content comparable to that of alfalfa hay grown under saline–alkaline conditions, could support environmentally sustainable meat production in salt-stressed regions. Full article
Show Figures

Figure 1

28 pages, 1660 KB  
Review
Air Pollutants in Puerto Rico: Key Pollutants and Carcinogenic Properties
by Devrim Kaya, Clara Santiago, Enrique Pernas, Sammy Truong, Greicha Martinez, Loyda B. Méndez and Yamixa Delgado
Int. J. Environ. Res. Public Health 2025, 22(10), 1549; https://doi.org/10.3390/ijerph22101549 (registering DOI) - 11 Oct 2025
Abstract
Air pollutants pose a growing public health concern in Puerto Rico (PR), particularly from rapid industrialization, military activities, environmental changes and natural disasters. A total of 193 pollutants, comprising the 187 hazardous air pollutants and the 6 criteria air pollutants—including particulate matter (PM), [...] Read more.
Air pollutants pose a growing public health concern in Puerto Rico (PR), particularly from rapid industrialization, military activities, environmental changes and natural disasters. A total of 193 pollutants, comprising the 187 hazardous air pollutants and the 6 criteria air pollutants—including particulate matter (PM), carbon monoxide (CO), volatile organic compounds (VOC), and heavy metals—coincide with rising respiratory disease rates (e.g., lung cancer) documented in national and regional health registries. This study aimed to review major air pollutants in PR, their molecular carcinogenic mechanisms (mostly focused on respiratory-related cancers), and the geographic areas impacted significantly. We conducted an extensive literature search utilizing peer-reviewed scientific articles (PubMed and Web of Science), governmental reports (EPA, WHO, State of Global Air), public health registries, (Puerto Rico Central Cancer Registry and International Agency for Research on Cancer) and local reports. Data on pollutant type, source, molecular pathways, and carcinogenic properties were extracted and synthesized. Our analysis identified ethylene oxide (EtO), polycyclic aromatic hydrocarbons, and PM from industrial sites as key pollutants. The municipalities of Salinas and Vieques, hubs of industrial activity and military exercises, respectively, emerged as critical hotspots where high concentrations of monitored pollutants (e.g., EtO, formaldehyde, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and diesel PM) are associated with a significant prevalence of cancer and respiratory diseases. These agents, known to induce genomic instability and chromosomal aberrations, were correlated with elevated local cancer incidence. Our findings underscore the urgent need for targeted public health interventions and support a multi-pronged strategy that includes: (1) enhanced regulatory oversight of EtO and other hazardous air pollutant emissions; (2) community-based biomonitoring of high-risk populations; and (3) investment in public health infrastructure and a transition to cleaner energy sources. Integrating rigorous environmental science with public health advocacy is essential to strengthen PR’s cancer-control continuum and foster resilience in its most vulnerable communities. Full article
(This article belongs to the Special Issue Air Pollution Exposure and Its Impact on Human Health)
Show Figures

Figure 1

12 pages, 994 KB  
Article
Integrated Absorption Spectroscopic Measurement of 2-Nitrophenol and Naphthalene
by Zhongmei Yang, Meng Wang, Dean S. Venables and Jun Chen
Int. J. Mol. Sci. 2025, 26(20), 9904; https://doi.org/10.3390/ijms26209904 (registering DOI) - 11 Oct 2025
Abstract
This study presents a generalized, high-precision measurement system based on Integrated Absorption Spectroscopy (IAS) for determining gas-phase absorption cross sections of low-volatility organic compounds (LVOCs), particularly semi-volatile organic compounds (SVOCs) in the atmosphere. Accurate cross sections and their temperature dependence are essential for [...] Read more.
This study presents a generalized, high-precision measurement system based on Integrated Absorption Spectroscopy (IAS) for determining gas-phase absorption cross sections of low-volatility organic compounds (LVOCs), particularly semi-volatile organic compounds (SVOCs) in the atmosphere. Accurate cross sections and their temperature dependence are essential for modeling atmospheric and high-temperature processes. We coupled a temperature-controlled inlet and cell (473 K) with a nitrogen carrier gas to measure the cross sections of 2-nitrophenol (2-NP) and naphthalene from 250 to 400 nm. At 473 K, peak cross sections for 2-NP were 2.31 × 10−17 cm2/molecule at 260 nm and 1.16 × 10−17 cm2/molecule at 335 nm. For naphthalene, values between 258 and 280 nm decreased from 1.62 × 10−17 to 1.28 × 10−17 cm2/molecule. Thermally induced spectral broadening and reduced peak cross sections align with thermodynamic theory. These high-temperature data resolve discrepancies among low-temperature datasets. For example, our maximum cross section for 2-NP (300–400 nm) is 29% lower than that reported by Chen et al. (293 K), whereas the value from Sangwan and Zhu (295 K) is 86.8% lower than Chen’s, supporting the higher reliability of Chen’s data. The IAS method thus offers a robust approach for quantifying absorption cross sections under atmospherically relevant conditions. Full article
(This article belongs to the Special Issue Thermodynamic and Spectral Studies of Complexes)
Show Figures

Figure 1

13 pages, 1398 KB  
Article
Tuning the Solid-State Hydrogen Release of Ammonia Borane by Entrapping the Intermediates: The Role of High-Boiling-Point Amines
by Mattia Bartoli, Giuseppe Ferraro, Marco Etzi, Stefania Lettieri, Candido Fabrizio Pirri and Sergio Bocchini
Molecules 2025, 30(20), 4057; https://doi.org/10.3390/molecules30204057 (registering DOI) - 11 Oct 2025
Abstract
Ammonia borane is a promising hydrogen storage material due to its high hydrogen content, but its use as hydrogen carrier under thermal stimuli involves the production of several byproducts, such as borazine, reducing hydrogen purity and the overall efficiency. This work is focused [...] Read more.
Ammonia borane is a promising hydrogen storage material due to its high hydrogen content, but its use as hydrogen carrier under thermal stimuli involves the production of several byproducts, such as borazine, reducing hydrogen purity and the overall efficiency. This work is focused on the use of high-boiling-point amines to modulate ammonia borane decomposition, aiming to enhance hydrogen release and suppress volatile NxBy species. Kissinger’s equation kinetics revealed that amines significantly influence the decomposition mechanism, and TGA-IR investigation showed a maximum of 2.4 wt.% of pure hydrogen release in the presence of triphenyl amine. Furthermore, the experimental data herein discussed, together with a computational study of activation energies, allowed us to derive a detailed mechanism that leads to a foundation for further advancement in the exploitation of ammonia borane as a hydrogen carrier, suggesting that the formation of linear species is anchored to amine over the release of borazine and production of poly borazine-like species. Full article
(This article belongs to the Special Issue New Materials for Gas Capture and Conversion)
Show Figures

Graphical abstract

19 pages, 5164 KB  
Article
Hierarchical Optimization Strategy Considering Regulation of Electric-Fused Magnesium High-Energy-Consuming Load and Deep Peak Regulation of Thermal Power
by Kexin Ren, Yibo Wang, Shunjiang Wang, Chuang Liu and Xudong Zhao
Energies 2025, 18(20), 5361; https://doi.org/10.3390/en18205361 (registering DOI) - 11 Oct 2025
Abstract
The randomness and volatility of wind power increase peak regulation pressure, leading to wind curtailment despite the deep peak regulation efforts of thermal power units. By integrating conventional power source dispatch and high-energy-consuming load configuration, a two-layer optimization model is developed to maximize [...] Read more.
The randomness and volatility of wind power increase peak regulation pressure, leading to wind curtailment despite the deep peak regulation efforts of thermal power units. By integrating conventional power source dispatch and high-energy-consuming load configuration, a two-layer optimization model is developed to maximize wind curtailment absorption and minimize thermal power deep peak regulation costs. The model first analyzes the fused magnesium load’s operating characteristics and its dispatch-participation model, then combines with the thermal power deep peak regulation model for hierarchical joint peak regulation. Applying the method to an actual regional system via CPLEX shows that it reduces wind curtailment, optimizes thermal power deep peak regulation, and improves power generation economic efficiency. Full article
Show Figures

Figure 1

42 pages, 3394 KB  
Article
Synergistic Air Quality and Cooling Efficiency in Office Space with Indoor Green Walls
by Ibtihaj Saad Rashed Alsadun, Faizah Mohammed Bashir, Zahra Andleeb, Zeineb Ben Houria, Mohamed Ahmed Said Mohamed and Oluranti Agboola
Buildings 2025, 15(20), 3656; https://doi.org/10.3390/buildings15203656 (registering DOI) - 11 Oct 2025
Abstract
Enhancing indoor environmental quality while reducing building energy consumption represents a critical challenge for sustainable building design, particularly in hot arid climates where cooling loads dominate energy use. Despite extensive research on green wall systems (GWSs), robust quantitative data on their combined impact [...] Read more.
Enhancing indoor environmental quality while reducing building energy consumption represents a critical challenge for sustainable building design, particularly in hot arid climates where cooling loads dominate energy use. Despite extensive research on green wall systems (GWSs), robust quantitative data on their combined impact on air quality and thermal performance in real-world office environments remains limited. This research quantified the synergistic effects of an active indoor green wall system on key indoor air quality indicators and cooling energy consumption in a contemporary office environment. A comparative field study was conducted over 12 months in two identical office rooms in Dhahran, Saudi Arabia, with one room serving as a control while the other was retrofitted with a modular hydroponic green wall system. High-resolution sensors continuously monitored indoor CO2, volatile organic compounds via photoionization detection (VOC_PID; isobutylene-equivalent), and PM2.5 concentrations, alongside dedicated sub-metering of cooling energy consumption. The green wall system achieved statistically significant improvements across all parameters: 14.1% reduction in CO2 concentrations during occupied hours, 28.1% reduction in volatile organic compounds, 20.9% reduction in PM2.5, and 13.5% reduction in cooling energy consumption (574.5 kWh annually). Economic analysis indicated financial viability (2.0-year payback; benefit–cost ratio 3.0; 15-year net present value SAR 31,865). Productivity-related benefits were valued from published relationships rather than measured in this study; base-case viability remained strictly positive in energy-only and conservative sensitivity scenarios. Strong correlations were established between evapotranspiration rates and cooling benefits (r = 0.734), with peak performance during summer months reaching 17.1% energy savings. Active indoor GWSs effectively function as multifunctional strategies, delivering simultaneous air quality improvements and measurable cooling energy reductions through evapotranspiration-mediated mechanisms, supporting their integration into sustainable building design practices. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
23 pages, 2102 KB  
Article
Hawkish or Dovish? That Is the Question: Agentic Retrieval of FED Monetary Policy Report
by Ana Lorena Jiménez-Preciado, Mario Alejandro Durán-Saldivar, Salvador Cruz-Aké and Francisco Venegas-Martínez
Mathematics 2025, 13(20), 3255; https://doi.org/10.3390/math13203255 (registering DOI) - 11 Oct 2025
Abstract
This paper develops a Natural Language Processing (NLP) pipeline to quantify the hawkish–dovish stance in the Federal Reserve’s semiannual Monetary Policy Reports (MPRs). The goal is to transform long-form central-bank text into reproducible stance scores and interpretable policy signals for research and monitoring. [...] Read more.
This paper develops a Natural Language Processing (NLP) pipeline to quantify the hawkish–dovish stance in the Federal Reserve’s semiannual Monetary Policy Reports (MPRs). The goal is to transform long-form central-bank text into reproducible stance scores and interpretable policy signals for research and monitoring. The corpus comprises 26 MPRs (26 February 2013 to 20 June 2025). PDFs are parsed and segmented and chunks are embedded, indexed with FAISS, retrieved via LangChain, and scored by GPT-4o on a continuous scale from −2 (dovish) to +2 (hawkish). Reliability is assessed with a four-dimension validation suite: (i) semantic consistency using cosine-similarity separation, (ii) numerical consistency against theory-implied correlation ranges (e.g., Taylor-rule logic), (iii) bootstrap stability of reported metrics, and (iv) content-quality diagnostics. Results show a predominant Neutral distribution (50.0%), with Dovish (26.9%) and Hawkish (23.1%). The average stance is near zero (≈0.019) with volatility σ ≈ 0.866, and the latest window exhibits a hawkish drift of ~+0.8 points. The Numerical Consistency Score is 0.800, and the integrated validation score is 0.796, indicating publication-grade robustness. We conclude that an embedding-based, agentic RAG approach with GPT-4o yields a scalable, auditable measure of FED communication; limitations include biannual frequency and prompt/model sensitivity, but the framework is suitable for policy tracking and empirical applications. Full article
Show Figures

Figure 1

Back to TopTop