Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,333)

Search Parameters:
Keywords = voltage source converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3697 KiB  
Article
Adaptive Control Strategy for the PI Parameters of Modular Multilevel Converters Based on Dual-Agent Deep Reinforcement Learning
by Jiale Liu, Weide Guan, Yongshuai Lu and Yang Zhou
Electronics 2025, 14(11), 2270; https://doi.org/10.3390/electronics14112270 (registering DOI) - 31 May 2025
Abstract
As renewable energy sources are integrated into power grids on a large scale, modular multilevel converter-high voltage direct current (MMC-HVDC) systems face two significant challenges: traditional PI (proportional integral) controllers have limited dynamic regulation capabilities due to their fixed parameters, while improved PI [...] Read more.
As renewable energy sources are integrated into power grids on a large scale, modular multilevel converter-high voltage direct current (MMC-HVDC) systems face two significant challenges: traditional PI (proportional integral) controllers have limited dynamic regulation capabilities due to their fixed parameters, while improved PI controllers encounter implementation difficulties stemming from the complexity of their control strategies. This article proposes a dual-agent adaptive control framework based on the twin delayed deep deterministic policy gradient (TD3) algorithm. This framework facilitates the dynamic adjustment of PI parameters for both voltage and current dual-loop control and capacitor voltage balancing, utilizing a collaboratively optimized agent architecture without reliance on complex control logic or precise mathematical models. Simulation results demonstrate that, compared with fixed-parameter PI controllers, the proposed method significantly reduces DC voltage regulation time while achieving precise dynamic balance control of capacitor voltage and effective suppression of circulating current, thereby notably enhancing system stability and dynamic response characteristics. This approach offers new solutions for dynamic optimization control in MMC-HVDC systems. Full article
(This article belongs to the Section Power Electronics)
23 pages, 4398 KiB  
Article
Modelling of Energy Management Strategies in a PV-Based Renewable Energy Community with Electric Vehicles
by Shoaib Ahmed, Amjad Ali, Sikandar Abdul Qadir, Domenico Ramunno and Antonio D’Angola
World Electr. Veh. J. 2025, 16(6), 302; https://doi.org/10.3390/wevj16060302 - 29 May 2025
Viewed by 139
Abstract
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles [...] Read more.
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles (EVs). EVs offer opportunities for distributed RESs, such as photovoltaic (PV) systems, which can be economically advantageous for RECs whose members own EVs and charge them within the community. This article focuses on the integration of PV systems and the management of energy loads for different participants—consumers and prosumers—along with a small EV charging setup in the REC. A REC consisting of a multi-unit building is examined through a mathematical and numerical model. In the model, hourly PV generation data are obtained from the PVGIS tool, while residential load data are modeled by converting monthly electricity bills, including peak and off-peak details, into hourly profiles. Finally, EV hourly load data are obtained after converting the data of voltage and current data from the charging monitoring portal into power profiles. These data are then used in our mathematical model to evaluate energy fluxes and to calculate self-consumed, exported, and shared energy within the REC based on energy balance criteria. In the model, an energy management system (EMS) is included within the REC to analyze EV charging behavior and optimize it in order to increase self-consumption and shared energy. Following the EMS, it is also suggested that the number of EVs to be charged should be evaluated in light of energy-sharing incentives. Numerical results have been reported for different seasons, showing the possibility for the owners of EVs to charge their vehicles within the community to optimize self-consumption and shared energy. Full article
Show Figures

Figure 1

19 pages, 2716 KiB  
Article
Control Strategy of a Multi-Source System Based on Batteries, Wind Turbines, and Electrolyzers for Hydrogen Production
by Ibrahima Touré, Alireza Payman, Mamadou Baïlo Camara and Brayima Dakyo
Energies 2025, 18(11), 2825; https://doi.org/10.3390/en18112825 - 29 May 2025
Viewed by 86
Abstract
Multi-source systems are gaining attention as an effective approach to seamlessly incorporate renewable energies within electrical networks. These systems offer greater flexibility and better energy management possibilities. The considered multi-source system is based on a 50 MW wind farm connected to battery energy [...] Read more.
Multi-source systems are gaining attention as an effective approach to seamlessly incorporate renewable energies within electrical networks. These systems offer greater flexibility and better energy management possibilities. The considered multi-source system is based on a 50 MW wind farm connected to battery energy storage and electrolyzers through modular multi-level DC/DC converters. Wind energy systems interface with the DC-bus via rectifier power electronics that regulate the DC-bus voltage and implement optimal power extraction algorithms for efficient wind turbine operation. However, integrating intermittent renewable energy sources with optimal microgrid management poses significant challenges. It is essential to mention that the studied multi-source system is connected to the DC loads (modular electrolyzers and local load). This work proposes a new regulation method designed specifically to improve the performance of the system. In this strategy, the excess wind farm energy is converted into hydrogen gas and may be stored in the batteries. On the other hand, when the wind speed is low or there is no excess of energy, electrolyzer operations are stopped. The battery energy management depends on the power balance between the DC load (modular electrolyzers and local load) requirements and the energy produced from the wind farm. This control should lead to eliminating the fluctuations in energy production and should have a high dynamic performance. This work presents a nonlinear control method using a backstepping concept to improve the performances of the system operations and to achieve the mentioned goals. To evaluate the developed control strategy, some simulations based on real meteorological wind speed data using Matlab are conducted. The simulation results show that the proposed backstepping control strategy is satisfactory. Indeed, by integrating this control strategy into the multi-source system, we offer a flexible solution for battery and electrolyzer applications, contributing to the transition to a cleaner, more resilient energy system. This methodology offers intelligent and efficient energy management. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 6786 KiB  
Article
Hybrid Radio-Frequency-Energy- and Solar-Energy-Harvesting-Integrated Circuit for Internet of Things and Low-Power Applications
by Guo-Ming Sung, Shih-Hao Chen, Venkatesh Choppa and Chih-Ping Yu
Electronics 2025, 14(11), 2192; https://doi.org/10.3390/electronics14112192 - 28 May 2025
Viewed by 34
Abstract
This paper proposes a hybrid energy-harvesting chip that utilizes both radio-frequency (RF) energy and solar energy for low-power applications and extended service life. The key contributions include a wide input power range, a compact chip area, and a high maximum power conversion efficiency [...] Read more.
This paper proposes a hybrid energy-harvesting chip that utilizes both radio-frequency (RF) energy and solar energy for low-power applications and extended service life. The key contributions include a wide input power range, a compact chip area, and a high maximum power conversion efficiency (PCE). Solar energy is a clean and readily available source. The hybrid energy harvesting system has gained popularity by combining RF and solar energy to improve overall energy availability and efficiency. The proposed chip comprises a matching network, rectifier, charge pump, DC combiner, overvoltage protection circuit, and low-dropout voltage regulator (LDO). The matching network ensures maximum power delivery from the antenna to the rectifier. The rectifier circuit utilizes a cross-coupled differential drive rectifier to convert radio frequency energy into DC voltage, incorporating boosting functionality. In addition, a solar harvester is employed to provide an additional energy source to extend service time and stabilize the output by combining it with the radio-frequency source using a DC combiner. The overvoltage protection circuit safeguards against high voltage passing from the DC combiner to the LDO. Finally, the LDO facilitates the production of a stable output voltage. The entire circuit is simulated using the Taiwan Semiconductor Manufacturing Company 0.18 µm 1P6M complementary metal–oxide–semiconductor standard process developed by the Taiwan Semiconductor Research Institute. The simulation results indicated a rectifier conversion efficiency of approximately 41.6% for the proposed radio-frequency-energy-harvesting system. It can operate with power levels ranging from −1 to 20 dBm, and the rectifier circuit’s output voltage is within the range of 1.7–1.8 V. A 0.2 W monocrystalline silicon solar panel (70 × 30 mm2) was used to generate a supplied voltage of 1 V. The overvoltage protection circuit limited the output voltage to 3.6 V. Finally, the LDO yielded a stable output voltage of 3.3 V. Full article
Show Figures

Figure 1

21 pages, 3404 KiB  
Article
Stability Analysis of a Receiving-End VSC-HVDC System with Parallel-Connected VSCs
by Zijun Bin, Xiangping Kong, Kai Zhao, Xi Wu, Yubo Yuan and Xuchao Ren
Electronics 2025, 14(11), 2178; https://doi.org/10.3390/electronics14112178 - 27 May 2025
Viewed by 75
Abstract
Voltage source converter-based high-voltage direct current (VSC-HVDC) systems integrated into weak AC grids may exhibit oscillation-induced instability, posing significant threats to power system security. With increasing structural complexity and diverse control strategies, the stability characteristics of VSC-HVDC system require further investigation. This paper [...] Read more.
Voltage source converter-based high-voltage direct current (VSC-HVDC) systems integrated into weak AC grids may exhibit oscillation-induced instability, posing significant threats to power system security. With increasing structural complexity and diverse control strategies, the stability characteristics of VSC-HVDC system require further investigation. This paper focuses on the stability of a receiving-end VSC-HVDC system consisting of a DC voltage-controlled VSC parallel-connected to a power-controlled VSC, under various operating conditions. First, small-signal models of each subsystem were developed and a linearized full-system model was constructed based on port relationships. Then, eigenvalue and participation factor analyses were utilized to evaluate the influence of control strategy, asymmetrical grid strength, power flow direction, and tie line on the system’s small-signal stability. A feasible short-circuit ratio (SCR) region was established based on joint power–topology joint, forming a stable operating space for the system. Finally, the correctness of the theoretical analysis was validated via MATLAB/Simulink time-domain simulations. Results indicate that, in comparison to the power control strategy, the DC voltage control strategy was more sensitive to variations in the AC system and demands a strong grid, and this disparity was predominantly caused by the DC voltage control. Furthermore, the feasible region of the short-circuit ratio (SCR) diminished with the increase in the length of the tie-line and alterations in power flow direction under the mutual-support power mode, leading to a gradual reduction in the system’s stability margin. Full article
Show Figures

Figure 1

19 pages, 5580 KiB  
Article
Stand-Alone Operation of Multi-Phase Doubly-Fed Induction Generator Supplied by SiC-Based Current Source Converter
by Łukasz Sienkiewicz, Filip Wilczyński and Szymon Racewicz
Energies 2025, 18(11), 2753; https://doi.org/10.3390/en18112753 - 26 May 2025
Viewed by 170
Abstract
This paper investigates the performance of a five-phase silicon carbide (SiC)-based current-source converter (CSC) integrated with a Doubly Fed Induction Generator (DFIG) for wind energy applications. The study explores both healthy and faulty operation, focusing on system behavior under transient conditions and various [...] Read more.
This paper investigates the performance of a five-phase silicon carbide (SiC)-based current-source converter (CSC) integrated with a Doubly Fed Induction Generator (DFIG) for wind energy applications. The study explores both healthy and faulty operation, focusing on system behavior under transient conditions and various load scenarios in stand-alone mode. A novel five-phase space vector PWM strategy in dual coordinate planes is introduced, which enables stable control during normal and open-phase fault conditions. Experimental results demonstrate improved stator voltage and current quality, particularly in terms of reduced Total Harmonic Distortion (THD), compared to traditional voltage-source converter-based systems. Furthermore, the system maintains operational stability under a single-phase open fault, despite increased oscillations in stator quantities. The results highlight the potential of five-phase CSC-DFIG systems as a robust and efficient alternative for wind power plants, particularly in configurations involving long cable connections and requiring low generator losses. Future work will focus on enhancing fault-tolerant capabilities and expanding control strategies for improved performance under different operating conditions. Full article
(This article belongs to the Special Issue Modeling, Control and Optimization of Wind Power Systems)
Show Figures

Figure 1

12 pages, 3403 KiB  
Article
Elimination Methods for High-Frequency Harmonics on the DC Side of Modular Multilevel Converters from the Perspective of Valve Control
by Qing Huai, Yirun Ji, Minxiang Yang, Ziyao Jie, Xi Yuan and Xiang Xu
Energies 2025, 18(10), 2655; https://doi.org/10.3390/en18102655 - 21 May 2025
Viewed by 105
Abstract
Modular multilevel converter (MMC)-based HVDC systems have become one promising way to integrate a large amount of renewable energy. However, the high-frequency harmonics problem could seriously affect the safety and stable operation level of MMC-HVDCs. Aiming at the high-frequency harmonics issues in MMC-HVDC [...] Read more.
Modular multilevel converter (MMC)-based HVDC systems have become one promising way to integrate a large amount of renewable energy. However, the high-frequency harmonics problem could seriously affect the safety and stable operation level of MMC-HVDCs. Aiming at the high-frequency harmonics issues in MMC-HVDC projects, this study investigates the influence of the valve-level controller modulation control on the DC high-frequency harmonics of MMCs. Firstly, the mechanism of high-frequency DC voltage harmonics generated by carrier quantization errors is revealed. Research results demonstrate that carrier quantization errors alter the switching instants of upper and lower arm submodules, inducing wideband high-frequency DC voltage harmonics ranging from several kilohertz to hundreds of kilohertz. In addition, a discrete carrier compensation method based on amplitude symmetry is proposed to eliminate the impact of carrier quantization errors on DC voltage harmonics. Lastly, a carrier phase-shifted (CPS)-modulated MMC simulation model is built in Matlab/Simulink to validate the impact of carrier quantization errors on DC high-frequency harmonics and the effectiveness of the proposed discrete carrier compensation method. Full article
Show Figures

Figure 1

19 pages, 2510 KiB  
Article
Efficiency Optimization Control Strategies for High-Voltage-Ratio Dual-Active-Bridge (DAB) Converters in Battery Energy Storage Systems
by Hui Ma, Jianhua Lei, Geng Qin, Zhihua Guo and Chuantong Hao
Energies 2025, 18(10), 2650; https://doi.org/10.3390/en18102650 - 20 May 2025
Viewed by 161
Abstract
This article introduces a high-efficiency, high-voltage-ratio bidirectional DC–DC converter based on the Dual-Active-Bridge (DAB) topology, specifically designed for applications involving low-voltage, high-capacity cells. Addressing the critical challenge of enhancing bidirectional power transfer efficiency under ultra-high step-up ratios, which is essential for integrating renewable [...] Read more.
This article introduces a high-efficiency, high-voltage-ratio bidirectional DC–DC converter based on the Dual-Active-Bridge (DAB) topology, specifically designed for applications involving low-voltage, high-capacity cells. Addressing the critical challenge of enhancing bidirectional power transfer efficiency under ultra-high step-up ratios, which is essential for integrating renewable energy sources and battery storage systems into modern power grids, an optimized control strategy is proposed. This strategy focuses on refining switching patterns and minimizing conduction losses to improve overall system efficiency. Theoretical analysis revealed significant enhancements in efficiency across various operating conditions. Simulation results further confirmed that the converter achieved exceptional performance in terms of efficiency at extremely high voltage conversion ratios, showcasing full-range Zero-Voltage Switching (ZVS) capabilities and reduced circulating reactive power. Specifically, the proposed method reduced circulating reactive power by up to 22.4% compared to conventional fixed-frequency control strategies, while achieving over 35% overload capability. These advancements reinforce the role of DAB as a key topology for next-generation high-performance power conversion systems, facilitating more efficient integration of renewable energy and energy storage solutions, and thereby contributing to the stability and sustainability of contemporary energy systems. Full article
(This article belongs to the Special Issue Advances in Energy Storage Systems for Renewable Energy: 2nd Edition)
Show Figures

Figure 1

13 pages, 2265 KiB  
Article
Sustainable Bioelectricity: Transformation of Chicha de Jora Waste into Renewable Energy
by Rojas-Flores Segundo, Cabanillas-Chirinos Luis, Nélida Milly Otiniano and Magaly De La Cruz-Noriega
Sustainability 2025, 17(10), 4499; https://doi.org/10.3390/su17104499 - 15 May 2025
Viewed by 242
Abstract
Corn is one of the most widely produced cereals worldwide, generating large amounts of waste, represents an environmental and economic challenge. In regions such as Africa and rural areas of Peru, access to electricity is limited, affecting quality of life and economic development. [...] Read more.
Corn is one of the most widely produced cereals worldwide, generating large amounts of waste, represents an environmental and economic challenge. In regions such as Africa and rural areas of Peru, access to electricity is limited, affecting quality of life and economic development. This study proposes using microbial fuel cells (MFCs) to convert chicha de jora waste—a traditional fermented beverage made from corn—into electrical energy. Single-chamber MFCs with activated carbon (anode) and zinc (cathode) electrodes were used. A total of 100 ml of chicha de jora waste was added in each MFC, and three MFCs were used in total. The MFCs demonstrated the viability of chicha de jora waste as a substrate for bioelectricity generation. Key findings include a notable peak in voltage (0.833 ± 0.041 V) and current (2.794 ± 0.241 mA) on day 14, with a maximum power density of 5.651 ± 0.817 mW/cm2. The pH increased from 3.689 ± 0.001 to 5.407 ± 0.071, indicating microorganisms’ degradation of organic acids. Electrical conductivity rose from 43.647 ± 1.025 mS/cm to 186.474 ± 6.517 mS/cm, suggesting ion release due to microbial activity. Chemical oxygen demand (COD) decreased from 957.32 ± 5.18 mg/L to 251.62 ± 61.15 mg/L by day 18, showing efficient degradation of organic matter. Oxidation-reduction potential (ORP) increased, reaching a maximum of 115.891 ± 4.918 mV on day 14, indicating more oxidizing conditions due to electrogenic microbial activity. Metagenomic analysis revealed Bacteroidota (48.47%) and Proteobacteria (29.83%) as the predominant phyla. This research demonstrates the potential of chicha de jora waste for bioelectricity generation in MFCs, offering a sustainable method for waste management and renewable energy production. Implementing MFC technology can reduce environmental pollution caused by corn waste and provide alternative energy sources for regions with limited access to electricity. Full article
(This article belongs to the Collection Advances in Biomass Waste Valorization)
Show Figures

Figure 1

19 pages, 5985 KiB  
Article
Generalized Predictive Control for a Single-Phase, Three-Level Voltage Source Inverter
by Diego Naunay, Paul Ayala, Josue Andino, Wilmar Martinez and Diego Arcos-Aviles
Energies 2025, 18(10), 2541; https://doi.org/10.3390/en18102541 - 14 May 2025
Viewed by 493
Abstract
In recent years, the study of model predictive control (MPC) in power electronics has gained significant attention due to its ability to optimize system performance and improve the dynamic control of complex power converters. There are two types of MPC: finite control set [...] Read more.
In recent years, the study of model predictive control (MPC) in power electronics has gained significant attention due to its ability to optimize system performance and improve the dynamic control of complex power converters. There are two types of MPC: finite control set (FCS) and continuous control set (CCS). The FCS–MPC has been studied more in regard to these two types of control due to its easy and intuitive implementation. However, FCS–MPC has some drawbacks, such as the exponential growth of the computational burden as the prediction horizon increases and, in some cases, a variable frequency. In contrast, generalized predictive control (GPC), part of CCS–MPC, offers significant advantages. It enables the use of a longer prediction horizon without increasing the computational burden in regard to its implementation, which has practical implications for the efficiency and performance of power converters. This paper presents the design of GPC applied to single-phase multilevel voltage source inverters, highlighting its advantages over FCS–MPC. The controller is optimized offline, significantly reducing the computational cost of implementation. Moreover, the controller is tested in regard to R, RL, and nonlinear loads. Finally, the validation results using a medium-performance controller and a Hardware-in-the-Loop device highlight the improved behavior of the proposed GPC, maintaining a harmonic distortion of less than 1.2% for R and RL loads. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 1031
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

14 pages, 4108 KiB  
Article
Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation
by Adrien Voldoire, Tanguy Phulpin and Mohamad Alaa Eddin Alali
Electronics 2025, 14(10), 1972; https://doi.org/10.3390/electronics14101972 - 12 May 2025
Viewed by 227
Abstract
The Shunt Active Filter (SAF) is an effective solution for mitigating electrical perturbations in power networks. SAFs usually consist of a voltage source inverter (VSI) with lossy transistors and bulky inductors. In this context, this article proposes analytical models to evaluate the losses [...] Read more.
The Shunt Active Filter (SAF) is an effective solution for mitigating electrical perturbations in power networks. SAFs usually consist of a voltage source inverter (VSI) with lossy transistors and bulky inductors. In this context, this article proposes analytical models to evaluate the losses and efficiency of a SAF. The models include conduction and switching losses in the transistors and diodes and are valid for both IGBT and SiC MOSFET transistors. The methodology consists of analysing the current waveform to separate the portion flowing through the transistor or diode. IGBT and SiC MOSFET are compared in two cases: firstly, the classic SAF operation with harmonic and reactive power compensation and, secondly, in the case of power injection by a photovoltaic panel or batteries, in addition to the classic SAF operation. The results are validated with real manufacturer data. A step-by-step comparison shows a good accuracy of the model. Therefore, the developed methodology is useful for a SAF designer to select relevant components for the converter and to estimate the efficiency of the system accurately and quickly. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

21 pages, 5979 KiB  
Article
Introducing the Adaptive Nonlinear Input Impedance Control Approach for MPPT of Renewable Generators
by Mahdi Salimi
Electronics 2025, 14(10), 1960; https://doi.org/10.3390/electronics14101960 - 11 May 2025
Viewed by 171
Abstract
This paper proposes a novel maximum power point tracking (MPPT) strategy for renewable energy systems using Input Impedance Control (I2C) in power electronic converters, combined with an adaptive nonlinear controller. Unlike conventional voltage- or current-based methods, the I2C-MPPT approach [...] Read more.
This paper proposes a novel maximum power point tracking (MPPT) strategy for renewable energy systems using Input Impedance Control (I2C) in power electronic converters, combined with an adaptive nonlinear controller. Unlike conventional voltage- or current-based methods, the I2C-MPPT approach leverages the maximum power transfer theorem by dynamically matching the converter’s equivalent input impedance to the source’s internal impedance. The adaptive nonlinear controller, designed using the Lyapunov stability theory, estimates system uncertainties and provides superior performance compared to traditional Proportional–Integral (PI) controllers. The proposed approach is validated through both simulations in MATLAB and experimental implementation using a Digital Signal Processor (DSP)-based controller. Practical results confirm the controller’s effectiveness in maintaining maximum power transfer under dynamic variations in source parameters, demonstrating improved settling time and robust operation. These findings underscore the potential of the I2C approach for enhancing the efficiency and reliability of renewable energy systems. Full article
Show Figures

Figure 1

17 pages, 3888 KiB  
Article
An Improved Space Vector PWM Algorithm with a Seven-Stage Switching Sequence for Three-Level Neutral Point Clamped Voltage Source Inverters
by Aleksandr N. Shishkov, Maxim M. Dudkin, Aleksandr S. Maklakov, Van Kan Le, Andrey A. Radionov and Vlada S. Balabanova
Energies 2025, 18(10), 2452; https://doi.org/10.3390/en18102452 - 10 May 2025
Viewed by 287
Abstract
The main purpose of this research is to develop an improved space vector pulse-width modulation (SVPWM) algorithm for three-level (3L) neutral point clamped (NPC) voltage source inverters (VSIs). The results of experiments conducted on the three-level power converter laboratory setup showed that the [...] Read more.
The main purpose of this research is to develop an improved space vector pulse-width modulation (SVPWM) algorithm for three-level (3L) neutral point clamped (NPC) voltage source inverters (VSIs). The results of experiments conducted on the three-level power converter laboratory setup showed that the proposed SVPWM algorithm with a seven-stage switching sequence (SS) can reduce a VSI’s switching frequency by 43.48% compared to the SVPWM algorithm with the base SS. It also improves the neutral point (NP) voltage balance in the VSI DC link by 4.2% by controlling the duty factor of distributed base vectors in each SVPWM period based on phase load currents. It reduced the values of the 5th- and 7th-order harmonics of the VSI output voltage by 19% and 15.7%, respectively. The results show that the usage of the improved SVPWM algorithm helps increase the efficiency of a 3L NPC VSI by 0.6% and reduce the higher harmonics. The obtained results confirm the efficiency of the suggested algorithm and its great potential for power converters in industry. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

14 pages, 2995 KiB  
Article
Utilization of Enhanced Asparagus Waste with Sucrose in Microbial Fuel Cells for Energy Production
by Rojas-Flores Segundo, Cabanillas-Chirinos Luis, Magaly De La Cruz-Noriega, Nélida Milly Otiniano and Moisés M. Gallozzo Cardenas
Fermentation 2025, 11(5), 260; https://doi.org/10.3390/fermentation11050260 - 6 May 2025
Viewed by 360
Abstract
The rapid increase in agricultural waste in recent years has led to significant losses and challenges for agro-industrial companies. At the same time, the growing demand for energy to support daily human activities has prompted these companies to seek new and sustainable methods [...] Read more.
The rapid increase in agricultural waste in recent years has led to significant losses and challenges for agro-industrial companies. At the same time, the growing demand for energy to support daily human activities has prompted these companies to seek new and sustainable methods for generating electric energy, which is crucial. Sucrose extracted from fruit waste can act as a carbon source for microbial fuel cells (MFCs), as bacteria metabolize sucrose to generate electrons, producing electric current. This research aims to evaluate the potential of sucrose as an additive to enhance the use of asparagus waste as fuel in single-chamber MFCs. The samples were obtained from CUC SAC in Trujillo, Peru. This study utilized MFCs with varying sucrose concentrations: 0% (Target), 5%, 10%, and 15%. It was observed that the MFCs with 15% sucrose and 0% sucrose (Target) produced the highest electric current (5.532 mA and 3.525 mA, respectively) and voltage (1.729 V and 1.034 V) on the eighth day of operation, both operating at slightly acidic pH levels. The MFC with 15% sucrose exhibited an oxidation-reduction potential of 3.525 mA, an electrical conductivity of 294.027 mS/cm, and a reduced chemical oxygen demand of 83.14%. Additionally, the MFC-15% demonstrated the lowest internal resistance (128.749 ± 12.541 Ω) with a power density of 20.196 mW/cm2 and a current density of 5.574 A/cm2. Moreover, the microbial fuel cells with different sucrose concentrations were connected in series, achieving a combined voltage of 4.56 V, showcasing their capacity to generate bioelectricity. This process effectively converts plant waste into electrical energy, reducing reliance on fossil fuels, and mitigating methane emissions from the traditional anaerobic decomposition of such waste. Full article
Show Figures

Figure 1

Back to TopTop