Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = water–rock interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5306 KB  
Article
Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning
by Peng Zhang, Xi Xi and Bo-Chao Wang
Minerals 2025, 15(9), 923; https://doi.org/10.3390/min15090923 - 29 Aug 2025
Viewed by 57
Abstract
To unravel the link between agate geochemistry, host volcanic rocks, and ore-forming processes, this study integrated elemental correlation analysis, interaction interpretation, and interpretable machine learning (LightGBM-SHAP framework with SMOTE and 5-fold cross-validation) using 203 in-situ element datasets from 16 global deposits. The framework [...] Read more.
To unravel the link between agate geochemistry, host volcanic rocks, and ore-forming processes, this study integrated elemental correlation analysis, interaction interpretation, and interpretable machine learning (LightGBM-SHAP framework with SMOTE and 5-fold cross-validation) using 203 in-situ element datasets from 16 global deposits. The framework achieved 99.01% test accuracy and 97.4% independent prediction accuracy in discriminating host volcanic rock types. Key findings reveal divergence between statistical elemental correlations and geological interactions. Synergies reflect co-migration/co-precipitation, while antagonisms stem from source competition or precipitation inhibition, unraveling processes like stepwise crystallization. Rhyolite-hosted agates form via a “crust-derived magmatic hydrothermal fluid—medium-low salinity complexation—multi-stage precipitation” model, driven by high-silica fluids enriching Sb/Zn. Andesite-hosted agates follow a “contaminated fluid—hydrothermal alteration—precipitation window differentiation” model, controlled by crustal contamination. Basalt-hosted agates form through a “low-temperature hydrothermal fluid—basic alteration—progressive mineral decomposition” model, with meteoric water regulating Na-Zn relationships. Zn acts as a cross-lithology indicator, tracing crust-derived fluid processes in rhyolites, feldspar alteration intensity in andesites, and alteration timing in basalts. This work advances volcanic-agate genetic studies via “correlation—interaction—mineralization model” coupling, with future directions focusing on large-scale micro-area elemental analysis. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

40 pages, 855 KB  
Article
Integrated Equilibrium-Transport Modeling for Optimizing Carbonated Low-Salinity Waterflooding in Carbonate Reservoirs
by Amaury C. Alvarez, Johannes Bruining and Dan Marchesin
Energies 2025, 18(17), 4525; https://doi.org/10.3390/en18174525 - 26 Aug 2025
Viewed by 260
Abstract
Low-salinity waterflooding (LSWF) enhances oil recovery at low cost in carbonate reservoirs, but its effectiveness requires the precise control of injected water chemistry and interaction with reservoir minerals. This study specifically investigates carbonated low-salinity waterflooding (CLSWF), where dissolved CO2 modulates geochemical processes. [...] Read more.
Low-salinity waterflooding (LSWF) enhances oil recovery at low cost in carbonate reservoirs, but its effectiveness requires the precise control of injected water chemistry and interaction with reservoir minerals. This study specifically investigates carbonated low-salinity waterflooding (CLSWF), where dissolved CO2 modulates geochemical processes. This study develops an integrated transport model coupling geochemical surface complexation modeling (SCM) with multiphase compositional dynamics to quantify wettability alteration during CLSWF. The framework combines PHREEQC-based equilibrium calculations of the Total Bond Product (TBP)—a wettability indicator derived from oil–calcite ionic bridging—with Corey-type relative permeability interpolation, resolved via COMSOL Multiphysics. Core flooding simulations, compared with experimental data from calcite systems at 100 C and 220 bar, reveal that magnesium ([Mg2+]) and sulfate ([SO42]) concentrations modulate the TBP, reducing oil–rock adhesion under controlled low-salinity conditions. Parametric analysis demonstrates that acidic crude oils (TAN higher than 1 mg KOH/g) exhibit TBP values approximately 2.5 times higher than those of sweet crudes, due to carboxylate–calcite bridging, while pH elevation (higher than 7.5) amplifies wettability shifts by promoting deprotonated -COO interactions. The model further identifies synergistic effects between ([Mg2+]) (ranging from 50 to 200 mmol/kgw) and ([SO42]) (higher than 500 mmol/kgw), which reduce (Ca2+)-mediated oil adhesion through competitive mineral surface binding. By correlating TBP with fractional flow dynamics, this framework could support the optimization of injection strategies in carbonate reservoirs, suggesting that ion-specific adjustments are more effective than bulk salinity reduction. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

13 pages, 5817 KB  
Article
Dissolution of Diamond in Water–Chloride Fluids at Mantle P-T Conditions
by Alexander Khokhryakov, Alexey Kruk, Alexander Sokol and Denis Nechaev
Minerals 2025, 15(9), 897; https://doi.org/10.3390/min15090897 - 24 Aug 2025
Viewed by 337
Abstract
Syngenetic fluid inclusions in natural diamonds are indicators of the composition of fluids responsible for growth and crystallization conditions. The chloride concentration in saline fluid inclusions of natural diamonds reaches 50 wt%. We study the dissolution of diamonds in the H2O-KCl-NaCl [...] Read more.
Syngenetic fluid inclusions in natural diamonds are indicators of the composition of fluids responsible for growth and crystallization conditions. The chloride concentration in saline fluid inclusions of natural diamonds reaches 50 wt%. We study the dissolution of diamonds in the H2O-KCl-NaCl system at temperatures of 1200 °C and 1400 °C and a pressure of 5.5 GPa using a BARS high-pressure multi-anvil apparatus. Two scenarios of diamond dissolution were experimentally investigated: (i) metasomatism by saline brines at high oxygen fugacity of the magnetite–hematite buffer; (ii) interaction with reduced carbon-unsaturated water–chloride fluid at low fO2 imposed by the iron–wüstite buffer. It is found that the presence of alkaline chlorides in the aqueous fluid significantly accelerates diamond dissolution at high oxygen fugacity but inhibits the process under reduced conditions. The morphology of diamond dissolution features is controlled by the presence of water in the fluid over the entire range of the studied P-T-fO2 conditions. Experimental results indicate that the interaction with oxidizing highly saline fluids during metasomatic events could negatively affect diamond preservation in mantle rocks and eventually lead to the formation of uneconomic kimberlites. Under reducing conditions, water–chloride fluids favor diamond preservation. Full article
Show Figures

Figure 1

18 pages, 6368 KB  
Article
Research on the Genesis Mechanism of Hot Springs in the Middle Reaches of the Wenhe River
by Cheng Xue, Nan Xing, Zongjun Gao, Yiru Niu and Dongdong Yang
Water 2025, 17(16), 2431; https://doi.org/10.3390/w17162431 - 17 Aug 2025
Viewed by 425
Abstract
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental [...] Read more.
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental isotope analyses, we identify a dual groundwater recharge mechanism: (1) rapid infiltration via preferential flow through fissure media and (2) slow seepage with evaporative loss along gas-bearing zones. Ion sources are influenced by water–rock interactions and positive cation exchange. The hydrochemical types of surface water and geothermal water can be divided into five categories, with little difference within the same geothermal area. The thermal reservoir temperatures range from 53.54 to 101.49 °C, with the Anjiazhuang and Qiaogou geothermal areas displaying higher temperatures than the Daidaoan area. Isotope calculations indicate that the recharge elevation ranges from 2865.76 to 4126.69 m. The proportion of cold water mixed in the shallow part is relatively large. A comparative analysis of the genetic models of the three geothermal water groups shows that they share the common feature of being controlled by fault zones. However, they differ in that the Daidao’an geothermal area in Mount Tai is of the karst spring type with a relatively low geothermal water temperature, whereas the Qiaogou geothermal area in Culai Town and the Anjiazhuang geothermal area in Feicheng are of the gravel or sandy shale spring types with a relatively high geothermal water temperature. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

14 pages, 8139 KB  
Article
Flooded Historical Mines of the Pitkäranta Area (Karelia, Russia): Heavy Metal(loid)s in Water
by Evgeniya Sidkina and Artem Konyshev
Water 2025, 17(16), 2418; https://doi.org/10.3390/w17162418 - 15 Aug 2025
Viewed by 480
Abstract
Mining activities have long-term impacts on the environment even after the active stage. Historical mines developed in the 19th and 20th centuries for tin, copper, and mainly iron ore are located in the Pitkäranta area (Karelia, Russia). These objects are considered in our [...] Read more.
Mining activities have long-term impacts on the environment even after the active stage. Historical mines developed in the 19th and 20th centuries for tin, copper, and mainly iron ore are located in the Pitkäranta area (Karelia, Russia). These objects are considered in our research as natural–anthropogenic sites of long-term water–rock interaction. Waters from flooded mines are the subject of this research. Redox conditions, pH, dissolved oxygen content, conductivity, and water temperature were determined during field work. The chemical composition of natural waters was determined by ICP-MS, ICP-AES, ion chromatography, potentiometric titration, and spectrophotometry. Our investigation showed that the mine waters are fresh and predominantly calcium–magnesium hydrocarbonate; most samples showed elevated sulfate ion contents. Circumneutral pH values and the absence of extremely high concentrations of heavy metals indicate neutral mine drainage. However the calculation of the accumulation coefficient showed the highest levels for siderophile elements relative to the corresponding data of the geochemical regional background. Moreover, zinc has the highest content in the series of heavy metal(loid)s considered. The maximum concentration of zinc was determined in the water of one of the shafts of the Lupikko mine, i.e., 5205 µg/L. The accumulation of heavy metals occurs in the process of long-term interaction of water–rock–organic matter under conductive redox conditions. Overall, the research highlighted the relevance of investigating the geochemistry of historical mines in the Pitkäranta area both from the perspective of environmental safety and the preservation of mining sites for scientific and educational purposes. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 7381 KB  
Article
Evaluation of Groundwater Quality and Health Risk Assessment During the Dry Season in the Xin’an River Basin, China
by Liyuan Zhao, Baili Geng, Mingjie Zhao, Baofei Li, Qingzhuang Miao, Shigao Liu, Zhigang Zhao, Haiyu Wang, Yuyan Li, Wei Jin, Xiao Zhang, Yan Sun, Hao Wu and Junchao Wang
Water 2025, 17(16), 2412; https://doi.org/10.3390/w17162412 - 15 Aug 2025
Viewed by 462
Abstract
A total of 162 groundwater samples were collected during November and December 2022 in the Xin’an River Basin during the dry season. In this research, the concentrations of various indicators in most samples did not exceed the prescribed standards. The indicators with the [...] Read more.
A total of 162 groundwater samples were collected during November and December 2022 in the Xin’an River Basin during the dry season. In this research, the concentrations of various indicators in most samples did not exceed the prescribed standards. The indicators with the largest number of exceedances were iodine and manganese, with 22 and 23 samples, respectively. Overall, the groundwater quality in the Xin’an River Basin was generally good, with only 7 samples with the EWQI values greater than 150, which exhibited poor groundwater quality. The primary factors influencing groundwater quality were the concentrations of I, Mn, and Al, which were predominantly affected by water–rock interactions. Groundwater quality in the Xin’an River Basin was mainly influenced by natural factors rather than anthropogenic activities. Both the carcinogenic and non-carcinogenic health risks posed by groundwater in the Xin’an River Basin were higher for children than for adults. The long-term chronic cumulative effect was the most important factor contributing to both carcinogenic and non-carcinogenic health risks. Iodine presented the highest non-carcinogenic health risks for both adults and children. In regions where high-iodine groundwater was distributed, it is recommended to enhance the monitoring of iodine concentrations in the groundwater. Full article
Show Figures

Figure 1

19 pages, 2887 KB  
Article
Multifractal Characterization of Heterogeneous Pore Water Redistribution and Its Influence on Permeability During Depletion: Insights from Centrifugal NMR Analysis
by Fangkai Quan, Wei Lu, Yu Song, Wenbo Sheng, Zhengyuan Qin and Huogen Luo
Fractal Fract. 2025, 9(8), 536; https://doi.org/10.3390/fractalfract9080536 - 15 Aug 2025
Viewed by 282
Abstract
The dynamic process of water depletion plays a critical role in both surface coalbed methane (CBM) development and underground gas extraction, reshaping water–rock interactions and inducing complex permeability responses. Addressing the limited understanding of the coupling mechanism between heterogeneous pore water evolution and [...] Read more.
The dynamic process of water depletion plays a critical role in both surface coalbed methane (CBM) development and underground gas extraction, reshaping water–rock interactions and inducing complex permeability responses. Addressing the limited understanding of the coupling mechanism between heterogeneous pore water evolution and permeability during dynamic processes, this study simulates reservoir transitions across four zones (prospective planning, production preparation, active production, and mining-affected zones) via centrifugal experiments. The results reveal a pronounced scale dependence in pore water distribution. During low-pressure stages (0–0.54 MPa), rapid drainage from fractures and seepage pores leads to a ~12% reduction in total water content. In contrast, high-pressure stages (0.54–3.83 MPa) promote water retention in adsorption pores, with their relative contribution rising to 95.8%, forming a dual-structure of macropore drainage and micropore retention. Multifractal analysis indicates a dual-mode evolution of movable pore space. Under low centrifugal pressure, D−10 and Δα decrease by approximately 34% and 36%, respectively, reflecting improved connectivity within large-pore networks. At high centrifugal pressure, an ~8% increase in D0D2 suggests that pore-scale heterogeneity in adsorption pores inhibits further seepage. A quantitative coupling model establishes a quadratic relationship between fractal parameters and permeability, illustrating that permeability enhancement results from the combined effects of pore volume expansion and structural homogenization. As water saturation decreases from 1.0 to 0.64, permeability increases by more than 3.5 times. These findings offer theoretical insights into optimizing seepage pathways and improving gas recovery efficiency in dynamically evolving reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

19 pages, 5533 KB  
Article
Sedimentary Processes of Gas Hydrate-Bearing Layers in the Dongsha Area, South China Sea: Implications for Hydrate Accumulation
by Yuhan Wang, Chenyang Bai, Zhe Wang, Wenlin Chen, Xiaolei Xu, Hongyuan Xu and Hongbin Wang
J. Mar. Sci. Eng. 2025, 13(8), 1550; https://doi.org/10.3390/jmse13081550 - 12 Aug 2025
Viewed by 270
Abstract
The methane flux in the Dongsha area in the northern South China Sea is relatively high. The results indicate the presence of both shallow and deep gas hydrate reservoirs at the Site DS-W08. The gas hydrate reservoir in this area is mainly composed [...] Read more.
The methane flux in the Dongsha area in the northern South China Sea is relatively high. The results indicate the presence of both shallow and deep gas hydrate reservoirs at the Site DS-W08. The gas hydrate reservoir in this area is mainly composed of fine-grained sediments, and high-saturation gas hydrates are present. The shallow-GHR (8–24 mbsf) exhibits a maximum hydrate saturation of 14% (pore volume). The deep-GHR (below 65 mbsf) shows a maximum hydrate saturation of 33% The suspended sedimentation process on the banks of turbidity currents and the deep-water traction current sedimentation process play potentially important roles in the enrichment of gas hydrates. To investigate the influence of sedimentary processes on gas hydrate accumulation, this study analyzed gas hydrate saturation, sediment grain size, grain compositions, biological components, and geochemical characteristics of hydrate-bearing and adjacent layers at Site DS-W08. Sediment grain size analysis suggests that the studied layer was formed through the interaction of turbidity current-induced overbank suspended deposition and traction current deposition. By comprehensively analyzing the comparison of sediment Sr/Ba ratios and the data of foraminifera and calcareous nannofossils, it is found that the bank deposits and traction current deposits triggered by turbidity currents correspond to glacial periods and interglacial periods, respectively. Analysis of biological components shows that layers with high foraminifera content and traction current-modified sediments are more favorable for gas hydrate accumulation. Hydrate reservoirs are all composed of traction current deposits, and the cap rock rich in foraminifera fossils at the top promotes hydrate formation; while the fine-grained turbidites formed during the turbidite deposition process inhibit hydrate accumulation. This study aims to deepen the understanding of the enrichment mechanism of natural gas hydrates and support the commercial development of fine-grained sediments in the northern South China Sea. Full article
Show Figures

Figure 1

19 pages, 9248 KB  
Article
Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
by Chenwei Tu, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong and Yuan Yao
Agriculture 2025, 15(15), 1704; https://doi.org/10.3390/agriculture15151704 - 7 Aug 2025
Viewed by 335
Abstract
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability [...] Read more.
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability and its interaction with surface water is essential for water–ecology–agriculture security in arid areas. This study evaluates the irrigation water quality and groundwater–surface water interaction influenced by agricultural activities in a typical arid plain region using hydrochemical and stable isotopic data from 51 water samples. The results reveal that the area of cultivated land increases by 658.9 km2 from 2000 to 2023, predominantly resulting from the conversion of bare land. Groundwater TDS (total dissolved solids) value exhibits significant spatial heterogeneity, ranging from 516 to 2684 mg/L. Cl, SO42−, and Na+ are the dominant ions in groundwater, with a widespread distribution of brackish water. Groundwater δ18O values range from −9.4‰ to −5.4‰, with the mean value close to surface water. In total, 86% of the surface water samples are good and suitable for agricultural irrigation, while 60% of shallow groundwater samples are marginally suitable or unsuitable for irrigation at present. Groundwater hydrochemistry is largely controlled by intensive evaporation, water–rock interaction, and agricultural activities (e.g., cultivated land expansion, irrigation, groundwater exploitation, and fertilizers). Agricultural activities could cause shallow groundwater salinization, even confined water deterioration, with an intense and frequent exchange between groundwater and surface water. In order to sustainably manage groundwater and maintain ecosystem stability in arid plain regions, controlling cultivated land area and irrigation water amount, enhancing water utilization efficiency, limiting groundwater exploitation, and fully utilizing floodwater resources would be the viable ways. The findings will help to deepen the understanding of the groundwater quality evolution mechanism in arid irrigated regions and also provide a scientific basis for agricultural water management in the context of extreme climatic events and anthropogenic activities. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

15 pages, 1745 KB  
Article
A Prediction Method for Technically Recoverable Reserves Based on a Novel Relationship Between the Relative Permeability Ratio and Saturation
by Dongqi Wang, Jiaxing Wen, Yang Sun and Daiyin Yin
Eng 2025, 6(8), 182; https://doi.org/10.3390/eng6080182 - 2 Aug 2025
Viewed by 275
Abstract
Upon reaching stabilized production in waterflooded reservoirs, waterflood performance curves are conventionally used to predict technically recoverable reserves (TRRs). However, as reservoirs enter high water-cut stages, the relationship between the relative permeability ratio and saturation becomes nonlinear, causing deflection in waterflood performance curves. [...] Read more.
Upon reaching stabilized production in waterflooded reservoirs, waterflood performance curves are conventionally used to predict technically recoverable reserves (TRRs). However, as reservoirs enter high water-cut stages, the relationship between the relative permeability ratio and saturation becomes nonlinear, causing deflection in waterflood performance curves. This leads to systematic overestimation of both predicted TRR and ultimate recovery factors. To overcome these limitations in conventional TRR prediction methods, this study establishes a novel relative permeability ratio-saturation relationship based on characteristic relative permeability curve behaviors. The proposed model is validated for three distinct fluid-rock interaction types. We further develop a permeability-driven forecasting model for oil production rates and water cuts. Comparative analyses with a conventional waterflood curve methodology demonstrate significant accuracy improvements. The results show that while traditional methods predict TRR ranging from 78.40 to 92.29 million tons, our model yields 70.73 million tons—effectively resolving overestimation issues caused by curve deflection during high water-cut phases. This approach establishes a robust framework for determining critical development parameters, including economic field lifespan, strategy adjustments, and ultimate recovery factor. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

21 pages, 4796 KB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Cited by 1 | Viewed by 479
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 4641 KB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 441
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

38 pages, 9589 KB  
Article
Identification of Interactions Between the Effects of Geodynamic Activity and Changes in Radon Concentration as Markers of Seismic Events
by Lidia Fijałkowska-Lichwa, Damian Kasza, Marcin Zając, Tadeusz A. Przylibski and Marek Kaczorowski
Appl. Sci. 2025, 15(15), 8199; https://doi.org/10.3390/app15158199 - 23 Jul 2025
Viewed by 276
Abstract
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset [...] Read more.
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset comprised the measurement results of 222Rn activity concentrations and the effects of the tectonic activity of rock masses acquired from two water-tube tiltmeters and five SRDN-3 radon probes. The analysis included four seismic events with moderate and light magnitudes (≥4.0), with a hypocenter at a depth of 1–10 km, located approximately 75 km from the research site. Each seismic shock had a different distribution of rock mass phases recorded by the integrated (probe-tiltmeter) measurement system. The results indicate that at the research site, the radon-tectonic signal is best identified between 25 and 48 h and between 49 and 72 h before the seismic shock. Positive correlations between the tectonic signal and the radon signal associated with the tension phase in the rock mass and negative correlations between the tectonic signal and the radon signal associated with the compression phase allow the description of the behavior of the rock mass before the seismic shock. Mixed correlations (positive and negative) indicate that both the stress and strain phases of the rock mass are recorded. The observed correlations seem particularly promising, as they can be recorded already 1–3 days before the seismic event, allowing an appropriately early response to the expected seismic event. Full article
Show Figures

Figure 1

23 pages, 15718 KB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 664
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 2430 KB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 324
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

Back to TopTop