Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,087)

Search Parameters:
Keywords = water resource utilization efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6983 KB  
Article
Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth
by Ruimin Zhang, Gaoqiang Lv, Changwen Du, Fei Ma, Shanshan Liu, Fangqun Gan and Ke Wu
Agronomy 2025, 15(10), 2334; https://doi.org/10.3390/agronomy15102334 - 4 Oct 2025
Abstract
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently [...] Read more.
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently reported MOF-based CRFs suffer from low nutrient content, which limits their further application. To address this issue, this study synthesized a series of hierarchically porous MOFs, denoted as MIL-156(X), using sodium acetate as a modulator under hydrothermal conditions. These materials were subsequently loaded with urea and phosphate from aqueous solution to form MOFs-based CRFs (N-P-MIL-156(X)). Results indicate that MIL-156(X) retain microporous integrity while incorporating abundant mesopores. Increasing modulator content reduced particle size and average pore diameter but increased specific surface area and adsorption capacity for urea and phosphate. MIL-156-H (with a high modulator content addition) exhibited the highest adsorption capacity, conforming to Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanisms of urea and phosphate involved hydrogen bonding and the formation of Ca intra-spherical complexes, respectively. N-P-MIL-156-H contained 10.8% N and 16.3% P2O5, with sustained release durations exceeding 42 days (N) and 56 days (P2O5) in an aqueous solution. Pot trials demonstrated significantly higher nutrient use efficiency (N-44.8%, P2O5-16.56%) and a 12.22% yield increase compared to conventional fertilization (N-35.6%, P2O5-13.32%). Thus, N-P-MIL-156-H-based fertilization significantly promotes rice growth and N/P utilization efficiency, offering a promising strategy for developing controlled-release fertilizers and improving nutrient management. Full article
Show Figures

Figure 1

20 pages, 3818 KB  
Article
Seasonal Design Floods Estimated by Stationary and Nonstationary Flood Frequency Analysis Methods for Three Gorges Reservoir
by Bokai Sun, Shenglian Guo, Sirui Zhong, Xiaoya Wang and Na Li
Hydrology 2025, 12(10), 258; https://doi.org/10.3390/hydrology12100258 - 30 Sep 2025
Abstract
Seasonal design floods and operational water levels are critical for high-efficient water resource utilization. In this study, statistical and rational analyses methods were applied to divide the flood season based on seasonal rainfall patterns. The Mann–Kendall test and Theil–Sen analysis were used to [...] Read more.
Seasonal design floods and operational water levels are critical for high-efficient water resource utilization. In this study, statistical and rational analyses methods were applied to divide the flood season based on seasonal rainfall patterns. The Mann–Kendall test and Theil–Sen analysis were used to detect trend changes in the observed flow series. Both stationary and nonstationary flood frequency analysis methods were conducted to estimate seasonal design floods. The Three Gorges Reservoir (TGR) in the Yangtze River, China, was selected as the case study. Results show that the TGR flood season could be divided into four periods: the reservoir drawdown period (1 May–20 June), the Meiyu flood period (21 June–31 July), the transition period (1 August–10 September), and the Autumn Rain refill period (11 September–31 October). Trend analyses indicate that the flow series at the TGR dam site exhibited a decreasing trend in recent decades. Upstream reservoir regulation has significantly reduced inflow discharges of TGR, and the nonstationary seasonal 1000-year design floods in the transition period are decreased by about 20%, and the flood control water level could rise from 145 m to 157 m, which can generate 2.288 billion kW h more hydropower (16.57% increase) while maintaining unchanged flood prevention standards. This study provides valuable insights into the TGR operational water level in the flood season and highlights the necessity of considering the regulation impact of upstream reservoirs for design floods and reservoir operational water levels. Full article
Show Figures

Figure 1

21 pages, 2038 KB  
Article
Improving the Yield and Quality of Morchella spp. Using Agricultural Waste
by Jiawen Wang, Weiming Cai, Qunli Jin, Lijun Fan, Zier Guo and Weilin Feng
J. Fungi 2025, 11(10), 703; https://doi.org/10.3390/jof11100703 - 28 Sep 2025
Abstract
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered [...] Read more.
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered attention. Specifically, reusing tomato substrate, mushroom residues, and coconut shells can lower the production costs and reduce environmental pollution, demonstrating remarkable ecological and economic benefits. To determine the soil microbial communities of Morchella spp. using different culture medias and influencing factors, this study analysed the relative abundance of bacterial and fungal communities in natural soil, soil with 5% tomato substrate, soil with 5% mushroom residues, and soil with 5% coconut shells using Illumina NovaSeq high-throughput sequencing. In addition, intergroup differences, soil physiochemical properties, and product quality were also determined. Results demonstrated that agricultural waste consisting of mushroom residues, waste tomato substrate, and coconut shells can improve the efficiency of Morchella spp. cultivation. When considering yield and quality, mushroom residue achieved the highest yield (soil nutrient enrichment), followed by tomato substrate (water holding + grass carbon nutrient). All three types of agricultural waste promoted early fruiting, significantly increased polysaccharide, crude protein, and potassium content, and lowered crude fat and fibre. In regard to soil improvement, the addition of different materials optimized the soil’s physical structure (reducing volume weight and increasing water holding capacity) and chemical properties (enrichment of nitrogen, phosphorus, and potassium, regulating nitrogen and medium trace elements). For microbial regulation, the added materials significantly increased the abundance of beneficial bacteria (e.g., Actinomycetota, Gemmatimonadota and Devosia) and strengthened nitrogen’s fixation/nitration/decomposition functions. In the mushroom residue group, the abundance of Bacillaceae was positively related to yield. Moreover, it inhibited pathogenic fungi like Mortierella and Trichoderma, and lowered fungal diversity to decrease ecological competition. In summary, mushroom residues have nutrient releasing and microbial regulation advantages, while tomato substrate and coconut shells are new high-efficiency resources. These increase yield through the “physiochemical–microorganism” collaborative path. Future applications may include regulating the function of microorganisms and optimizing waste preprocessing technologies to achieve sustainability. Full article
Show Figures

Figure 1

17 pages, 1860 KB  
Article
Experimental Study of the Efficiency of Hydrokinetic Turbines Under Real River Conditions
by Alexander Stanilov, Rangel Sharkov, Angel Alexandrov, Rositsa Velichkova and Iskra Simova
Energies 2025, 18(19), 5160; https://doi.org/10.3390/en18195160 - 28 Sep 2025
Abstract
In recent years, a growing global effort has been underway to reduce the Earth’s carbon footprint. One of the main strategies to achieve this goal is the utilization of available renewable energy resources. Among the largest and most inexhaustible is hydro-power. This paper [...] Read more.
In recent years, a growing global effort has been underway to reduce the Earth’s carbon footprint. One of the main strategies to achieve this goal is the utilization of available renewable energy resources. Among the largest and most inexhaustible is hydro-power. This paper presents an experimental study of three hydrokinetic turbines tested under real river conditions, aiming to evaluate their effectiveness in harnessing the kinetic energy of flowing water. The experiment is described in detail, including velocity field measurements conducted within the river section used for testing. Based on the experimental data, the main performance characteristics of the three turbines are presented, specifically their power output and efficiency. The importance of selecting an optimal riverbed site and customizing turbine runners to local flow conditions is highlighted, as even slight velocity fluctuations can significantly impact performance. Among the tested designs, the K1–6 turbine runner showed the highest power and efficiency, while the K2–4 runner provided superior rotational stability, making it promising for consistent energy output in variable flow environments Full article
Show Figures

Figure 1

25 pages, 3054 KB  
Article
Assessing Streamflow Response to Climate Change Under Shared Socioeconomic Pathways (SSPs) in the Olifants River Basin, South Africa
by Kiya Kefeni Benti, Megersa Olumana Dinka, Sophia Sudi Rwanga and Mesfin Reta Aredo
Hydrology 2025, 12(9), 244; https://doi.org/10.3390/hydrology12090244 - 20 Sep 2025
Viewed by 289
Abstract
Climate change affects streamflow through changes in precipitation, temperature, and extreme weather events. These changes will impact water resource availability significantly. Thus, understanding the impacts of climate change on hydrology is essential for sustainable water management. This study investigated the potential effects of [...] Read more.
Climate change affects streamflow through changes in precipitation, temperature, and extreme weather events. These changes will impact water resource availability significantly. Thus, understanding the impacts of climate change on hydrology is essential for sustainable water management. This study investigated the potential effects of climate change on streamflow in the Olifants River basin under shared socioeconomic pathways (SSPs), utilizing the restructured version of the Soil and Water Assessment Tool (SWAT+) model. Projected precipitation and temperature (Tmax and Tmin) were analyzed for the near (2030–2060) and far (2070–2100) future to simulate and analyze streamflow variations under SSP245 and SSP585 scenarios using bias-corrected CMIP6 data and the SWAT+ model. The SWAT+ model was calibrated and validated successfully, with Nash–Sutcliffe efficiency (NSE) values of 0.76 and 0.77, and coefficient of determination (R2) values of 0.78 and 0.82 during the calibration and validation periods, respectively. Climate model ensemble projections show a consistent decline in precipitation and increases in Tmax and Tmin, with Tmin increasing more significantly. These changes are projected to reduce streamflow, with annual declines of 43.08% and 50.89% under SSP245 and 57.79% and 58.82% under SSP585 for the near and far future, respectively. Moreover, climate change reduces streamflow across all seasons in the Olifants River basin. Therefore, adopting water management strategies such as enhancing integrated water resource management and investing in climate-resilient infrastructure is essential for sustainable water resource management under changing climate conditions in the basin. Full article
Show Figures

Figure 1

20 pages, 3989 KB  
Article
A2DSC-Net: A Network Based on Multi-Branch Dilated and Dynamic Snake Convolutions for Water Body Extraction
by Shuai Zhang, Chao Zhang, Qichao Zhao, Junjie Ma and Pengpeng Zhang
Water 2025, 17(18), 2760; https://doi.org/10.3390/w17182760 - 18 Sep 2025
Viewed by 256
Abstract
The accurate and efficient acquisition of the spatiotemporal distribution of surface water is of vital importance for water resource utilization, flood monitoring, and environmental protection. However, deep learning models often suffer from two major limitations when applied to high-resolution remote sensing imagery: the [...] Read more.
The accurate and efficient acquisition of the spatiotemporal distribution of surface water is of vital importance for water resource utilization, flood monitoring, and environmental protection. However, deep learning models often suffer from two major limitations when applied to high-resolution remote sensing imagery: the loss of small water body features due to encoder scale differences, and reduced boundary accuracy for narrow water bodies in complex backgrounds. To address these challenges, we introduce the A2DSC-Net, which offers two key innovations. First, a multi-branch dilated convolution (MBDC) module is designed to capture contextual information across multiple spatial scales, thereby enhancing the recognition of small water bodies. Second, a Dynamic Snake Convolution module is introduced to adaptively extract local features and integrate global spatial cues, significantly improving the delineation accuracy of narrow water bodies under complex background conditions. Ablation and comparative experiments were conducted under identical settings using the LandCover.ai and Gaofen Image Dataset (GID). The results show that A2DSC-Net achieves an average precision of 96.34%, average recall of 96.19%, average IoU of 92.8%, and average F1-score of 96.26%, outperforming classical segmentation models such as U-Net, DeepLabv3+, DANet, and PSPNet. These findings demonstrate that A2DSC-Net provides an effective and reliable solution for water body extraction from high-resolution remote sensing imagery. Full article
Show Figures

Figure 1

15 pages, 876 KB  
Article
Water Use Efficiency Assessment of Cement Production Based on Life Cycle Analysis
by Jialin Liu, Xue Bai, Lingsi Kong and Yan Bai
Sustainability 2025, 17(18), 8225; https://doi.org/10.3390/su17188225 - 12 Sep 2025
Viewed by 349
Abstract
In the context of increasing water scarcity, improving industrial water efficiency and resource management has become an urgent need, particularly in water-intensive sectors such as the cement industry. Based on the Water Life Cycle Assessment (WLCA) framework, in this study, a comprehensive assessment [...] Read more.
In the context of increasing water scarcity, improving industrial water efficiency and resource management has become an urgent need, particularly in water-intensive sectors such as the cement industry. Based on the Water Life Cycle Assessment (WLCA) framework, in this study, a comprehensive assessment of water use, consumption, reuse, and wastewater discharge during cement production was conducted, and paths were proposed for improving water efficiency. Unlike traditional water footprint assessments, which primarily focus on measuring water consumption, the WLCA integrates a holistic analysis of the operational status of water systems. The research results show that for cement production in the Yellow River Basin, the waste heat power generation system accounts for the highest proportion of water consumption (65%), with its circulating cooling unit functioning as the core water-related subsystem. A large quantity of daily circulating cooling wastewater can be reused in production after treatment. Significant differences exist in unit product water consumption among enterprise types: clinker and cement production enterprises (0.18–0.30 m3/t) have higher water consumption than cement grinding stations (0.02–0.05 m3/t), and some enterprises hold considerable water-saving potential. Wastewater recovery and treatment technologies can markedly reduce water wastage. Meanwhile, waste heat recovery technologies improve energy utilization efficiency and indirectly lower water cooling demand. Additionally, waste co-processing technologies reduce virtual water consumption by replacing part of the coal used in cement production. This research provides practical technical solutions for water conservation and resource optimization in the cement industry, facilitating improvements in water efficiency management. Full article
Show Figures

Figure 1

28 pages, 9295 KB  
Article
Scenario Simulation and Comprehensive Evaluation of Coupling Coordination Relationship Between Regional Water Use and Water Environmental Protection: A Case Study of Tianjin, China
by Bohong Li, Kaili Liu, Wenkai Chen and Hongbo Liu
Sustainability 2025, 17(18), 8220; https://doi.org/10.3390/su17188220 - 12 Sep 2025
Viewed by 317
Abstract
Water use and water environmental protection exhibit highly complex interactions, and their coupling coordination is essential for long-term urban sustainability. This study analyzes the system structure of water utilization, and constructs a water resources–social economy–water environment (WR-SE-WE) system dynamics model for Tianjin and [...] Read more.
Water use and water environmental protection exhibit highly complex interactions, and their coupling coordination is essential for long-term urban sustainability. This study analyzes the system structure of water utilization, and constructs a water resources–social economy–water environment (WR-SE-WE) system dynamics model for Tianjin and five policy scenarios (business as usual (BAU), water conservation prioritization (WCP), social–economic advancement (SEA), water environmental protection (WEP), and integrated balanced development (IBD)) are simulated. A coupling coordination degree (CCD) model is employed to evaluate scenario performance. The key results show that Tianjin’s WR-SE-WE CCD keeps increasing but differentiates for different scenarios: IBD consistently outperforms all scenarios, achieving an optimal coupling coordination degree of 0.926 by 2035, while the other scenarios rank SEA (0.920) > WEP (0.902) > BAU (0.880) > WCP (0.874). The indicators’ quantitative results exhibit single-policy scenario trade-offs: WCP maximizes water efficiency and pollution control, but severely constrains social economy, offering a temporary solution. WEP excels in water resources supply but limits GDP growth, serving as an effective interim measure. SEA drives rapid economic expansion but strains resources and delays pollution control, making it suitable for long-term planning. Combining the obstacle degree model, four recommendations are proposed, including implementing cross-sector water governance, accelerating the green industrial transition, prioritizing reclaimed water, and scaling agricultural efficiency. These results provide a scientific basis for promoting high-quality regional development in the future. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Graphical abstract

19 pages, 6706 KB  
Article
Preparation and Characterization of Polyferric Sulfate Derived from Iron Sludge in De-Ironing Water Plants and Its Utilization in Water Treatment
by Huiping Zeng, Simin Li, Xiao Sun, Chengbo Liu, Jie Zhang and Dong Li
Water 2025, 17(17), 2632; https://doi.org/10.3390/w17172632 - 5 Sep 2025
Viewed by 820
Abstract
Resource utilization of water treatment residuals (WTRs) has emerged as a significant focus in environmental engineering research. In this study, waste iron sludge from a groundwater de-ironing plant was used as the raw material. Ferric salts were recovered via sulfuric acid leaching and [...] Read more.
Resource utilization of water treatment residuals (WTRs) has emerged as a significant focus in environmental engineering research. In this study, waste iron sludge from a groundwater de-ironing plant was used as the raw material. Ferric salts were recovered via sulfuric acid leaching and subsequently polymerized into polyferric sulfate (PFS) with varying basicity (B = 0.1–0.4) using the alkalization–aging method. The optimal leaching conditions were determined as a liquid–solid ratio of 10:1, a sulfuric acid concentration of 3 mol·L−1, a reaction temperature of 70 °C, and a reaction time of 30 min, yielding a ferric leaching amount of 0.45 g Fe/g dry sludge. Characterization results revealed that the synthesized PFS exhibited similar ferric polymer species, functional group structures, and polymeric crystal structures to those of commercial PFS (CPFS). Coagulation performance tests demonstrated that at a dosage of 30 mg Fe/L, the prepared PFS achieved turbidity and UV254 removal efficiencies of 96.88% and 81.87%, respectively, outperforming CPFS. In domestic wastewater treatment, combining the synthesized PFS with magnetic nanoparticles Fe3O4@C yielded a magnetic coagulant that further enhanced the removal of turbidity, chemical oxygen demand (COD), and total phosphorus (TP) to maximum efficiencies of 94.66%, 81.97%, and 98.08%, respectively. This study confirms the technical feasibility and environmental–economic benefits of preparing magnetic PFS coagulants from waste iron sludge for wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 3813 KB  
Review
Resource Recycling and Ceramsite Utilization of Coal-Based Solid Waste: A Review
by Han Wang, Chunfu Liu, Chenyu Zhu and Zhipeng Gong
Minerals 2025, 15(9), 948; https://doi.org/10.3390/min15090948 - 5 Sep 2025
Viewed by 478
Abstract
Coal-based solid waste refers to solid waste generated during coal mining and washing processes, and is one of the major types of industrial solid waste in China. Its resource utilization is a critical part of the clean and efficient use of coal, and [...] Read more.
Coal-based solid waste refers to solid waste generated during coal mining and washing processes, and is one of the major types of industrial solid waste in China. Its resource utilization is a critical part of the clean and efficient use of coal, and preparing ceramsite from coal-based solid waste is an important means to promote its “resourceful, large-scale, and high-value” utilization. This paper systematically summarizes the types and properties of coal-based solid waste, its resource utilization methods, and research progress in ceramsite preparation. The focus is on assessing the feasibility, process features, and application status of ceramsite made from coal-based solid waste in areas such as construction, heavy metal stabilization, and water treatment. Using coal-based solid waste to produce ceramsite offers cost reduction and pollution mitigation benefits while showcasing significant potential for resource recycling and sustainable development. This paper further outlines the development trends and technological innovation directions for coal-based solid waste ceramsite, providing theoretical support and practical guidance for advancing the resource utilization of industrial solid waste. Full article
(This article belongs to the Special Issue Recycling and Utilization of Metallurgical and Chemical Solid Waste)
Show Figures

Figure 1

21 pages, 5406 KB  
Article
Optimizing Dam Detection in Large Areas: A Hybrid RF-YOLOv11 Framework with Candidate Area Delineation
by Chenyao Qu, Yifei Liu, Zhimin Wu and Wei Wang
Sensors 2025, 25(17), 5507; https://doi.org/10.3390/s25175507 - 4 Sep 2025
Viewed by 953
Abstract
As critical infrastructure for flood control and disaster mitigation, the completeness of a dam spatial database directly impacts regional emergency disaster response. However, existing dam data in some developing countries suffer from severe gaps and outdated information, particularly concerning small- and medium-sized dams, [...] Read more.
As critical infrastructure for flood control and disaster mitigation, the completeness of a dam spatial database directly impacts regional emergency disaster response. However, existing dam data in some developing countries suffer from severe gaps and outdated information, particularly concerning small- and medium-sized dams, hindering rapid response during disasters. There is an urgent need to improve the physical dam database and implement dynamic monitoring. Yet, current remote sensing identification methods face limitations, including a lack of diverse dam samples, limited analysis of geographical factors, and low efficiency in full-image processing, making it difficult to efficiently enhance dam databases. To address these issues, this study proposes a dam extraction framework integrating comprehensive geographical factor analysis with deep learning detection, validated in Sindh Province, Pakistan. Firstly, multiple geographical factors were fused using the Random Forest algorithm to generate a dam existence probability map. High-probability candidate areas were delineated using dynamic threshold segmentation (precision: 0.90, recall: 0.76, AUC: 0.86). Subsequently, OpenStreetMap (OSM) water body data excluded non-dam potential areas, further narrowing the candidate areas. Finally, a dam image dataset was constructed to train a dam identification model based on YOLOv11, achieving an mAP50 of 0.85. This trained model was then applied to high-resolution remote sensing imagery of the candidate areas for precise identification. Ultimately, 16 previously unrecorded small and medium-sized dams were identified in Sindh Province, enhancing its dam location database. Experiments demonstrate that this method, through the synergistic optimization of geographical constraints and deep learning, significantly improves the efficiency and reliability of dam identification. It provides high-precision data support for dam disaster emergency response and water resource management, exhibiting strong practical utility and regional scalability. Full article
Show Figures

Figure 1

19 pages, 5973 KB  
Article
Phase Transformation and Si/Al Leaching Behavior of High-Silica–Alumina Coal Gangue Activated by Sodium-Based Additives
by Hongwei Du, Ke Li, Xinghao Shi, Lingxian Fang and Zhao Cao
Minerals 2025, 15(9), 942; https://doi.org/10.3390/min15090942 - 4 Sep 2025
Viewed by 423
Abstract
High-silica–alumina coal gangue is rich in kaolinite, quartz, and other mineral components. The potential for resource utilization is huge, but the silica–aluminate structure is highly stable, and it is difficult to achieve efficient dissociation and elemental enrichment using traditional extraction processes. This study [...] Read more.
High-silica–alumina coal gangue is rich in kaolinite, quartz, and other mineral components. The potential for resource utilization is huge, but the silica–aluminate structure is highly stable, and it is difficult to achieve efficient dissociation and elemental enrichment using traditional extraction processes. This study selects typical high-silica–alumina coal gangue as the research object and systematically studies the rules of the physical phase transformation mechanism and ion migration behavior in the activation process of the sodium-based additives stage. In addition, a graded leaching and separation processing route is established, realizing the effective separation and extraction of silica–alumina. The key parameters were optimized using response surface methodology (RSM), obtaining the optimal activation conditions of 800 °C, 30 min, and an additives ratio of 0.8. Under these conditions, the highest dissolution rates of silica and alumina are 82.1% and 92.36%, respectively. Characterization techniques such as XRD, FTIR, and SEM reveal that the activation mechanism of coal gangue involves the decomposition of the aluminosilicate framework and the erosion of sodium ions. At the same time, the chemical bonding reorganization contributes to forming water-soluble sodium silicate (Na2SiO3) and insoluble nepheline (NaAlSiO4), which significantly promotes the release of Si and Al. When the activation temperature is too high, the nepheline phase is transformed into amorphous glassy sodium aluminate and precipitated on the surface, which gradually encapsulates the sodium silicate. This encapsulation restricts dissolution pathways, thereby leading to system densification. Moreover, enhanced resistance to acid attack leads to a decrease in the dissolution rates of Si and Al. This study elucidates the mineral phase reconstruction and element migration mechanisms involved in sodium-based activation and presents a viable approach for the high-value utilization of coal gangue. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 3925 KB  
Review
Recent Advances in the Hydrodynamic Characteristics of Industrial Recirculating Aquaculture Systems and Their Interactions with Fish
by Yanfei Wu, Jianeng Chen, Chengxia Jia, Fukun Gui, Jianuo Xu, Xiaolong Yin, Dejun Feng and Qingjing Zhang
Sustainability 2025, 17(17), 7946; https://doi.org/10.3390/su17177946 - 3 Sep 2025
Cited by 1 | Viewed by 655
Abstract
Industrial recirculating aquaculture systems (RAS) constitute an energy-saving and environmentally friendly approach to modern aquaculture production. The hydrodynamic characteristics within these systems, coupled with the ecological environment of the fish, are essential for the efficient operation of the system and for promoting optimal [...] Read more.
Industrial recirculating aquaculture systems (RAS) constitute an energy-saving and environmentally friendly approach to modern aquaculture production. The hydrodynamic characteristics within these systems, coupled with the ecological environment of the fish, are essential for the efficient operation of the system and for promoting optimal fish growth and welfare. These systems provide several advantages, such as high intensification, efficient water resource utilization, enhanced environmental control, and minimal environmental pollution. Consequently, it has emerged as prominent avenue for advancing aquaculture development in China. This paper begins with an examination of the fundamental concepts and primary tank structures underpinning industrial RAS. It then proceeds to elucidate the hydrodynamic characteristics within RAS and their interrelationship with fish growth and welfare. Furthermore, it offers a thorough review of tank hydrodynamic characteristics and fish interactions from various perspectives, including operational parameters, hydrodynamic drive equipment, fish behavior, and the aquaculture environment. Finally, the limitations of current studies are assessed, and potential future research directions are proposed. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

17 pages, 1892 KB  
Article
The Use of Collagen Hydrolysate from Chromium Waste in the Optimization of Leather Retanning
by Jan Zarlok, Małgorzata Kowalska and Jerzy Szakiel
Sustainability 2025, 17(17), 7912; https://doi.org/10.3390/su17177912 - 3 Sep 2025
Viewed by 548
Abstract
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as [...] Read more.
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as a raw material in the retanning process. Collagen hydrolysate was extracted from chrome-tanned leather shavings through acid hydrolysis and subsequently incorporated, together with melamine, into novel retanning compositions. The experimental design, based on the Kleeman method, involved varying the hydrolysate content (25%, 30%, 35%) and melamine concentration (2.5%, 3.0%, 3.5%, 4.0%) to assess their impact on the physicochemical properties of retanned wet-blue leathers. An innovative aspect of the study was the integration of the Kateskór computer program, employing the Kleeman experimental planning method, to optimize the formulation of retanning compositions. This computational approach enabled the precise determination of hydrolysate and melamine quantities required to achieve leather properties that meet both producer and consumer expectations. The optimized formulation identified the hydrolysate content in the range of 28.78–29.63% and melamine in the range of 3.61–3.68% as optimal for obtaining leathers with the desired mechanical strength, shrinkage temperature, and water vapor permeability. The study presents a practical model of a circular economy within the leather industry, aligning with the European Green Deal Strategy by promoting resource efficiency and minimizing hazardous waste. The proposed methodology provides a viable pathway for sustainable leather production through waste valorization and process optimization. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

21 pages, 5876 KB  
Article
Efficient Regulation and Prediction Model Construction for Water and Fertilizer Management Through Resource Utilization of Manure and Urea Co-Application
by Kaiqi Qi, Xiaofeng Tang, Jianhong Ma, Rui Zhao, Junan Bao, Pengshan Tang, Jiaqi Liu, Dandan Pei, Xiaohou Shao and Xinyu Mao
Water 2025, 17(17), 2594; https://doi.org/10.3390/w17172594 - 2 Sep 2025
Viewed by 863
Abstract
In intensive agriculture, the excessive application of chemical fertilizers leads to approximately 50% nitrogen loss, which exacerbates water pollution and the greenhouse effect. Meanwhile, nitrogen and phosphorus emissions from livestock manure have far exceeded those from chemical fertilizers, becoming the primary source of [...] Read more.
In intensive agriculture, the excessive application of chemical fertilizers leads to approximately 50% nitrogen loss, which exacerbates water pollution and the greenhouse effect. Meanwhile, nitrogen and phosphorus emissions from livestock manure have far exceeded those from chemical fertilizers, becoming the primary source of agricultural non-point-source pollution. This study aims to clarify the comprehensive effects of combining manure with urea application and precision irrigation on the soil environment, lettuce growth, and quality, and to determine the optimal water and fertilizer management strategy. The results indicate that combining manure with urea application and precision irrigation can effectively mitigate non-point-source pollution, enhance soil nutrients, promote lettuce growth, and improve quality. When the irrigation volume reaches 75–78% of field capacity and the ratio of manure to urea nitrogen ranges from 7:3 to 1:1, key indicators for soil health, lettuce growth, and quality can exceed 90% of their respective maximum levels. This study provides a scientific basis and practical guidance for the resource utilization of manure and precise water–fertilizer management in intensive lettuce production. Full article
Show Figures

Figure 1

Back to TopTop