Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,225)

Search Parameters:
Keywords = wave power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3211 KB  
Article
Internal Wave Responses to Interannual Climate Variability Across Aquatic Layers
by Jinichi Koue
Water 2025, 17(19), 2905; https://doi.org/10.3390/w17192905 (registering DOI) - 8 Oct 2025
Abstract
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 [...] Read more.
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 on internal wave behavior using a series of numerical simulations in Lake Biwa in Japan. In each simulation, air temperature, wind speed, or precipitation was perturbed by ±2 standard deviations relative to the climatological mean. Power spectral analysis of simulated velocity fields was conducted for the surface, thermocline, and bottom layers, focusing on super-inertial (6–16 h), near-inertial (~16–30 h), and sub-inertial (>30 h) frequency bands. The results show that higher air temperatures intensify stratification and enhance near-inertial internal waves, particularly within the thermocline, whereas cooler conditions favor sub-inertial wave dominance. Increased wind speeds amplify internal wave energy across all layers, with the strongest effect occurring in the high-frequency band due to intensified wind stress and vertical shear, while weaker winds suppress wave activity. Precipitation variability primarily affects surface stratification, exerting more localized and weaker impacts. These findings highlight the non-linear, depth-dependent responses of internal waves to atmospheric drivers and improve understanding of the coupling between climate variability and internal wave energetics. The insights gained provide a basis for more accurate predictions and sustainable management of stratified aquatic ecosystems under future climate scenarios. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

33 pages, 781 KB  
Review
Recent Advances in Electrochemical Sensors for the Detection of Anti-Inflammatory and Antibiotic Drugs: A Comprehensive Review
by Gisele Afonso Bento Mello, Stephen Rathinaraj Benjamin, Fábio de Lima and Rosa F. Dutra
Biosensors 2025, 15(10), 676; https://doi.org/10.3390/bios15100676 - 8 Oct 2025
Abstract
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, [...] Read more.
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, and signal amplification approaches for quantifying nonsteroidal anti-inflammatory drugs (NSAIDs) and various antibiotic classes, including sulfonamides, tetracyclines, macrolides, and quinolones. Particular attention is given to nanostructured carbon-based materials, metal nanoparticles, and polymer composites that enhance electron transfer, improve selectivity, and lower limits of detection (LODs). The analytical performance of different electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry is critically compared across various drug targets. Trends indicate that hybrid nanomaterial-modified electrodes consistently achieve sub-micromolar detection limits in biological and environmental samples, offering potential for point-of-care diagnostics and environmental monitoring. Current challenges include improving sensor stability, mitigating fouling effects, and ensuring reproducibility in complex matrices. Future research should focus on integrated, miniaturized sensing platforms capable of multiplex detection, paving the way for rapid, portable, and sustainable analytical solutions in pharmaceutical and biomedical applications. Full article
Show Figures

Graphical abstract

19 pages, 2109 KB  
Article
Machine Learning Optimization of SWRO Membrane Performance in Wave-Powered Desalination for Sustainable Water Treatment
by Lukka Thuyavan Yogarathinam, Sani I. Abba, Jamilu Usman, Abdulhayat M. Jibrin and Isam H. Aljundi
Water 2025, 17(19), 2896; https://doi.org/10.3390/w17192896 - 7 Oct 2025
Abstract
Wave-powered desalination systems integrate reverse osmosis (RO) with renewable ocean energy, providing a sustainable and environmentally responsible approach to freshwater production. This study aims to investigate wave-powered RO desalination using supervised and deep machine learning (ML) models to predict the effects of variable [...] Read more.
Wave-powered desalination systems integrate reverse osmosis (RO) with renewable ocean energy, providing a sustainable and environmentally responsible approach to freshwater production. This study aims to investigate wave-powered RO desalination using supervised and deep machine learning (ML) models to predict the effects of variable feed flow on permeate recovery and salt rejection under dynamic hydrodynamic conditions. Multiple ML models, including Gaussian process regression (GPR), support vector machines (SVMs), multi-layer perceptron (MLP), linear regression (LR), and decision trees (DTs) were systematically assessed for the prediction of permeate recovery and salt rejection (%) using three distinct input configurations: limited physicochemical features (M1), flow- and salinity-related parameters (M2), and a comprehensive variable set incorporating temperature (M3). GPR achieved near-perfect predictive accuracy R2 values (~1.00) with minimal errors for permeate recovery and salt rejection, attributed to its flexible kernel and probabilistic design. MLP and SVM also performed well, though they showed greater sensitivity to feature complexity. In contrast, DT models exhibited limited generalization and higher error rates, particularly when key features were excluded. Sensitivity analyses revealed that feed pressure (FP) and brine salinity (BS) were dominant positive influencers of permeate recovery and salt rejection. In contrast, brine flow (BF) and permeate salinity (PS) had negative impacts. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

20 pages, 3732 KB  
Article
Numerical Verification of an Anchor-Free Jack-Up Installation Method for Offshore Wind Turbine Structures Using Tugboat Fleet
by Min Han, Young IL Park, A Ra Ko, Jin Young Sung and Jeong-Hwan Kim
J. Mar. Sci. Eng. 2025, 13(10), 1906; https://doi.org/10.3390/jmse13101906 - 3 Oct 2025
Viewed by 204
Abstract
With the rapid expansion of offshore wind power, efficient installation methods for 10 MW offshore wind turbines (OWTs) are increasingly being required. Conventional approaches using installation vessels, heavy-lift barges, and mooring systems incur high costs, long schedules, and weather-related constraints, particularly in harsh [...] Read more.
With the rapid expansion of offshore wind power, efficient installation methods for 10 MW offshore wind turbines (OWTs) are increasingly being required. Conventional approaches using installation vessels, heavy-lift barges, and mooring systems incur high costs, long schedules, and weather-related constraints, particularly in harsh seas such as the West Sea and Jeju. This study investigates an anchor-free installation method for jack-up-type OWTs employing tugboats instead of specialized vessels. Environmental loads were estimated with MOSES and AQWA, and frequency-domain analyses were performed to evaluate wave responses and towline tensions. Results showed that maximum tensions remained below both the Safe Working Load of towlines and the Effective Bollard Pull of tugboats during all spudcan lowering stages. Even under conservative OPLIM conditions, feasibility was confirmed. The findings indicate that the proposed tug-assisted method ensures adequate station-keeping capability while reducing cost, construction time, and weather dependency, presenting a practical alternative for large-scale OWT installation. Full article
Show Figures

Figure 1

18 pages, 4581 KB  
Article
Metamaterial-Enhanced Microstrip Antenna with Integrated Channel Performance Evaluation for Modern Communication Networks
by Jasim Khudhair Salih Turfa and Oguz Bayat
Appl. Sci. 2025, 15(19), 10692; https://doi.org/10.3390/app151910692 - 3 Oct 2025
Viewed by 229
Abstract
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and [...] Read more.
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and truncations to circulate surface currents. Compactness, reduced surface wave losses, and enhanced impedance bandwidth are made possible by the coaxial probe feed, periodic electromagnetic gap (EBG) slots, and fractal patch geometry. For in-phase reflection and beam focusing, a specially designed single-layer metasurface (MTS) reflector with an 11 × 11 circular aperture array is placed 20 mm behind the antenna. A log-normal shadowing model was used to test the antenna in real-world scenarios, and the results showed a strong correlation between the model predictions and actual data. At up to 250 m, the polarization-agile, high-gain antenna demonstrated reliable performance across a variety of channel conditions, enabling accurate characterization of the Channel Quality Indicator (CQI), Signal-to-Noise Ratio (SNR), and Reference Signal Received Power (RSRP). By combining cutting-edge antenna architecture with an empirical channel performance study, this research presents a compact, affordable, and fabrication-friendly solution for increased wireless coverage and efficiency. Full article
Show Figures

Figure 1

22 pages, 2572 KB  
Article
The Fractional Soliton Solutions for the Three-Component Fractional Nonlinear Schrödinger Equation Under the Zero Background
by Xiaoqian Huang, Yifan Bai, Huanhe Dong and Yong Zhang
Fractal Fract. 2025, 9(10), 645; https://doi.org/10.3390/fractalfract9100645 - 2 Oct 2025
Viewed by 270
Abstract
Fractional differential equations have emerged as a prominent focus of modern scientific research due to their advantages in describing the complexity and nonlinear behavior of many physical phenomena. In particular, when considering problems with initial-boundary value conditions, the solution of nonlinear fractional differential [...] Read more.
Fractional differential equations have emerged as a prominent focus of modern scientific research due to their advantages in describing the complexity and nonlinear behavior of many physical phenomena. In particular, when considering problems with initial-boundary value conditions, the solution of nonlinear fractional differential equations becomes particularly important. This paper aims to explore the fractional soliton solutions for the three-component fractional nonlinear Schrödinger (TFNLS) equation under the zero background. According to the Lax pair and fractional recursion operator, we obtain fractional nonlinear equations with Riesz fractional derivatives, which ensure the integrability of these equations. In particular, by the completeness relation of squared eigenfunctions, we derive the explicit form of the TFNLS equation. Subsequently, in the reflectionless case, we construct the fractional N-soliton solutions via the Riemann–Hilbert (RH) method. The analysis results indicate that as the order of the Riesz fractional derivative increases, the widths of both one-soliton and two-soliton solutions gradually decrease. However, the absolute values of wave velocity, phase velocity, and group velocity of one component of the vector soliton exhibit an increasing trend, and show power-law relationships with the amplitude. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

19 pages, 7379 KB  
Article
Criterion Circle-Optimized Hybrid Finite Element–Statistical Energy Analysis Modeling with Point Connection Updating for Acoustic Package Design in Electric Vehicles
by Jiahui Li, Ti Wu and Jintao Su
World Electr. Veh. J. 2025, 16(10), 563; https://doi.org/10.3390/wevj16100563 - 2 Oct 2025
Viewed by 199
Abstract
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods [...] Read more.
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods for hybrid point connections. New energy vehicles face unique acoustic challenges due to the special nature of their power systems and operating conditions, such as high-frequency noise from electric motors and electronic devices, wind noise, and road noise at low speeds, which directly affect the vehicle’s ride comfort. Therefore, optimizing the acoustic package design of new energy vehicles to reduce in-cabin noise and improve acoustic quality is an important issue in automotive engineering. In this context, this study proposes an improved point connection correction factor by optimizing the division range of the decision circle. The factor corrects the dynamic stiffness of point connections based on wave characteristics, aiming to improve the analysis accuracy of the hybrid FE-SEA model and enhance its ability to model boundary effects. Simulation results show that the proposed method can effectively improve the model’s analysis accuracy, reduce the degrees of freedom in analysis, and increase efficiency, providing important theoretical support and reference for the acoustic package design and NVH performance optimization of new energy vehicles. Full article
Show Figures

Figure 1

14 pages, 1864 KB  
Article
Simulations and Analysis of Spatial Transmission Efficiency of Wireless Optical Communications Across Sea–Air Media
by Yingying Li, Zhuang Liu, Shuwan Yu, Qiang Fu, Yingchao Li, Chao Wang and Haodong Shi
Optics 2025, 6(4), 47; https://doi.org/10.3390/opt6040047 - 1 Oct 2025
Viewed by 153
Abstract
Wireless optical communication technology offers advantages, such as high-data transmission rates, confidentiality, and robust anti-interception capabilities, making it highly promising for cross-sea–air interface communication applications. However, to our knowledge, no studies have been conducted on the spatial transmission efficiency of light after it [...] Read more.
Wireless optical communication technology offers advantages, such as high-data transmission rates, confidentiality, and robust anti-interception capabilities, making it highly promising for cross-sea–air interface communication applications. However, to our knowledge, no studies have been conducted on the spatial transmission efficiency of light after it passes through ocean waves. To address this issue, a seawater-wave–atmosphere model based on Gerstner waves was constructed. Using the Monte Carlo method, the optical power distributions of the laser light passing through the sea–air interface at the first- and second-level sea scales were simulated. The optimal positions for deploying one to three receiving optical systems were analyzed, and a laser communication receiving system was designed. Furthermore, simulations were conducted to determine the optical transmission efficiency of the designed optical receiver system. At the first-level sea scale, the optimal position for a single-point detector was (0°, ±5.61°), whereas those for the two detectors were (0°, ±5.61°) and (0°, ±5.68°). At the second-level sea scale, the optimal position for a single-point detector was (0°, ±3.17°), and the optimal positions for the two detectors were (0°, ±3.1°) and (0°, ±2.98°). Under the designed conditions, the optical transmission efficiency for a single detector at the first- and second-level sea scales was 0.74–0.88%, respectively, while it was 0.79–1.09% in the two-detector case. At the second-level sea scale, the optical transmission efficiency for a single detector was 0.37–2.09% and 0.50–1.97% in the two-detector case. Full article
Show Figures

Figure 1

25 pages, 5853 KB  
Article
Effects of Dish-Shaped Buoy and Perforated Damping Plate on Power Absorption in Floating Two-Body Wave Energy Converters
by Lilei Li, Changdong Wei, Mingchen Li, Xuening Song, Yanjun Liu and Gang Xue
J. Mar. Sci. Eng. 2025, 13(10), 1881; https://doi.org/10.3390/jmse13101881 - 1 Oct 2025
Viewed by 180
Abstract
Floating two-body wave energy converters (WECs) exhibit advantages, including insensitivity to water depth and tidal range, along with adaptability to multi-level sea states. However, WECs suffer from drawbacks, including unstable power generation and low wave energy capture efficiency. To enhance the hydrodynamic performance [...] Read more.
Floating two-body wave energy converters (WECs) exhibit advantages, including insensitivity to water depth and tidal range, along with adaptability to multi-level sea states. However, WECs suffer from drawbacks, including unstable power generation and low wave energy capture efficiency. To enhance the hydrodynamic performance and energy capture efficiency, a dish-shaped buoy and perforated damping plate configuration was designed based on conventional two-body WECs. First, four two-body WECs were developed according to these configurations. Second, a numerical model based on potential flow theory and the boundary element method (BEM) was established, with its accuracy validated through sea trials. Finally, the frequency domain response, motion response, mooring tension and power absorption effect of the WECs under wave excitation of grades 3, 4 and 5 were analyzed. The results demonstrate that both the dish-shaped buoy and perforated damping plate significantly improve the device stability and energy capture potential. Regarding the motion response, both configurations reduced the peak response amplitudes in heave and roll, enhancing the device stability. For mooring tension, both configurations reduced the mooring line tension. For power absorption, the perforated damping plate effectively increased the energy capture efficiency, while the dish-shaped buoy also demonstrated superior performance under higher-energy wave conditions. Overall, this study provides a theoretical foundation and design guidance for floating two-body WECs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

8 pages, 1199 KB  
Article
6.7 kW LD-Pumped Nearly-Single-Mode MOPA Fiber Laser Enabled by Low-NA Confined-Doped Fiber
by Hengyu Tang, Bingyu Rao, Yufei Gan, Baolai Yang, Fan Wang, Lei Zhang, Meng Wang, Lili Hu, Zilun Chen, Hu Xiao, Zhixian Li, Pengfei Ma and Zefeng Wang
Photonics 2025, 12(10), 971; https://doi.org/10.3390/photonics12100971 - 30 Sep 2025
Viewed by 229
Abstract
Optimized designs of the ytterbium-doped fiber (YDF) have been effective at mitigating transverse mode instability (TMI) and enabling high-power scaling. In this study, the use of low-NA confined-doped YDFs is explored to achieve high-power nearly-single-mode continuous-wave lasers. Three types of 25/500 µm YDFs [...] Read more.
Optimized designs of the ytterbium-doped fiber (YDF) have been effective at mitigating transverse mode instability (TMI) and enabling high-power scaling. In this study, the use of low-NA confined-doped YDFs is explored to achieve high-power nearly-single-mode continuous-wave lasers. Three types of 25/500 µm YDFs are manufactured with ~80% doping ratio and respective NAs of 0.058, 0.053, and 0.048. Experimental results indicate that the corresponding TMI thresholds increase with the descending NA in the YDFs. Based on the YDF with a NA of 0.048, the master oscillation power amplification (MOPA) fiber laser is scaled to 6.79 kW with nearly-single-mode beam quality. Full article
Show Figures

Figure 1

20 pages, 1372 KB  
Article
A Novel Multi-Scale Entropy Approach for EEG-Based Lie Detection with Channel Selection
by Jiawen Li, Guanyuan Feng, Chen Ling, Ximing Ren, Shuang Zhang, Xin Liu, Leijun Wang, Mang I. Vai, Jujian Lv and Rongjun Chen
Entropy 2025, 27(10), 1026; https://doi.org/10.3390/e27101026 - 29 Sep 2025
Viewed by 196
Abstract
Entropy-based analyses have emerged as a powerful tool for quantifying the complexity, regularity, and information content of complex biological signals, such as electroencephalography (EEG). In this regard, EEG-based lie detection offers the advantage of directly providing more objective and less susceptible-to-manipulation results compared [...] Read more.
Entropy-based analyses have emerged as a powerful tool for quantifying the complexity, regularity, and information content of complex biological signals, such as electroencephalography (EEG). In this regard, EEG-based lie detection offers the advantage of directly providing more objective and less susceptible-to-manipulation results compared to traditional polygraph methods. To this end, this study proposes a novel multi-scale entropy approach by fusing fuzzy entropy (FE), time-shifted multi-scale fuzzy entropy (TSMFE), and hierarchical multi-band fuzzy entropy (HMFE), which enables the multidimensional characterization of EEG signals. Subsequently, using machine learning classifiers, the fused feature vector is applied to lie detection, with a focus on channel selection to investigate distinguished neural signatures across brain regions. Experiments utilize a publicly benchmarked LieWaves dataset, and two parts are performed. One is a subject-dependent experiment to identify representative channels for lie detection. Another is a cross-subject experiment to assess the generalizability of the proposed approach. In the subject-dependent experiment, linear discriminant analysis (LDA) achieves impressive accuracies of 82.74% under leave-one-out cross-validation (LOOCV) and 82.00% under 10-fold cross-validation. The cross-subject experiment yields an accuracy of 64.07% using a radial basis function (RBF) kernel support vector machine (SVM) under leave-one-subject-out cross-validation (LOSOCV). Furthermore, regarding the channel selection results, PZ (parietal midline) and T7 (left temporal) are considered the representative channels for lie detection, as they exhibit the most prominent occurrences among subjects. These findings demonstrate that the PZ and T7 play vital roles in the cognitive processes associated with lying, offering a solution for designing portable EEG-based lie detection devices with fewer channels, which also provides insights into neural dynamics by analyzing variations in multi-scale entropy. Full article
(This article belongs to the Special Issue Entropy Analysis of Electrophysiological Signals)
Show Figures

Figure 1

45 pages, 6118 KB  
Review
Research Progress on Tunable Absorbers for Various Wavelengths Based on Metasurfaces
by Ke Jiang, Huizhen Feng, Manna Gu, Xufeng Jing and Chenxia Li
Photonics 2025, 12(10), 968; https://doi.org/10.3390/photonics12100968 - 29 Sep 2025
Viewed by 581
Abstract
In complex electromagnetic environments, traditional static absorbers struggle to meet dynamic control requirements. Tunable absorbers based on metasurfaces have emerged as a research hotspot due to their ability to flexibly control electromagnetic wave properties. This paper provides a systematic review of research progress [...] Read more.
In complex electromagnetic environments, traditional static absorbers struggle to meet dynamic control requirements. Tunable absorbers based on metasurfaces have emerged as a research hotspot due to their ability to flexibly control electromagnetic wave properties. This paper provides a systematic review of research progress in tunable absorbers across the microwave, terahertz, and infrared bands, with a focus on analyzing the physical mechanisms, material systems, and performance characteristics of five dynamic control methods: electrical control, magnetic control, optical control, temperature control, and mechanical control. Electrical control achieves rapid response through materials such as graphene and varactor diodes; magnetic control utilizes ferrites and other materials for stable tuning; optical control relies on photosensitive materials for ultrafast switching; temperature control employs phase-change materials for large-range reversible regulation; and mechanical control expands tuning freedom through structural deformation. Research indicates that multi-band compatibility faces challenges due to differences in structural scale and physical mechanisms, necessitating the integration of emerging materials and synergistic control strategies. This paper summarizes the core performance metrics and typical applications of absorbers across various bands and outlines future development directions such as multi-field synergistic control and low-power design, providing theoretical references and technical pathways for the development of intelligent tunable absorber devices. Full article
(This article belongs to the Special Issue Advances in Metasurfaces: Novel Designs and Applications)
Show Figures

Figure 1

19 pages, 2205 KB  
Article
Final Implementation and Performance of the Cheia Space Object Tracking Radar
by Călin Bîră, Liviu Ionescu and Radu Hobincu
Remote Sens. 2025, 17(19), 3322; https://doi.org/10.3390/rs17193322 - 28 Sep 2025
Viewed by 265
Abstract
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of [...] Read more.
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of true spatial test objects orbiting Earth. The radar is based on two decommissioned 32 m satellite communication antennas already present at the Cheia Satellite Communication Center, that were retrofitted for radar operation in a quasi-monostatic architecture. A Linear Frequency Modulated Continuous Wave (LFMCW) Radar design was implemented, using low transmitted power (2.5 kW) and advanced software-defined signal processing for detection and tracking of Low Earth Orbit (LEO) targets. System validation involved dry-run acceptance tests and calibration campaigns with known reference satellites. The radar demonstrated accurate measurements of range, Doppler velocity, and angular coordinates, with the capability to detect objects with radar cross-sections as low as 0.03 m2 at slant ranges up to 1200 km. Tracking of medium and large Radar Cross Section (RCS) targets remained robust under both fair and adverse weather conditions. This work highlights the feasibility of re-purposing legacy satellite infrastructure for SST applications. The Cheia radar provides a cost-effective, EUSST-compliant performance solution using primarily commercial off-the-shelf components. The system strengthens the EU SST network while demonstrating the advantages of LFMCW radar architectures in electromagnetically congested environments. Full article
Show Figures

Figure 1

15 pages, 1739 KB  
Article
Interference Feature of Square-Wave Modulated Single-Frequency Signal to Regulated Power Supply
by Xiaopeng Li, Guanghui Wei, Xiaodong Pan and Jiangning Sun
Electronics 2025, 14(19), 3842; https://doi.org/10.3390/electronics14193842 - 27 Sep 2025
Viewed by 236
Abstract
To explore the advantages and limitations of employing square-wave modulated single-frequency signals in electric field radiated susceptibility testing, critical interference effect tests using both single-frequency continuous waves and square-wave modulated single-frequency radiation fields were conducted, respectively, at four susceptible frequencies (98, 262, 326, [...] Read more.
To explore the advantages and limitations of employing square-wave modulated single-frequency signals in electric field radiated susceptibility testing, critical interference effect tests using both single-frequency continuous waves and square-wave modulated single-frequency radiation fields were conducted, respectively, at four susceptible frequencies (98, 262, 326, 404 MHz) of a linear voltage regulator and two susceptible frequencies (26, 36 MHz) of a switching-mode power supply. The variation law of critical interference field strength according to the modulation period was determined. The test results demonstrate that the output interruption in the tested power supplies was not only determined by the interference field strength and frequency but also significantly influenced by the repetition period of the interference signal. Square-wave modulated single-frequency interference provides superior characterization of the time-domain response characteristics of the equipment under testing when compared to conventional single-frequency continuous wave interference. However, RS103 only employs a modulated signal with a 1 ms repetition period, making it insufficient to fully characterize the actual susceptible characteristics of the tested equipment. Therefore, it requires supplementary evaluation through critical interference testing using single-frequency continuous waves. Full article
Show Figures

Figure 1

29 pages, 953 KB  
Review
Genome Editing in the Chicken: From PGC-Mediated Germline Transmission to Advanced Applications
by Jiliang He, Ningkun Shi, Hongqin Yao, Juan Li, Yajun Wang and Jiannan Zhang
Int. J. Mol. Sci. 2025, 26(19), 9426; https://doi.org/10.3390/ijms26199426 - 26 Sep 2025
Viewed by 564
Abstract
Avian genome editing has historically lagged behind mammalian research. This disparity is primarily due to a unique reproductive biology that precludes standard techniques like pronuclear injection. A pivotal breakthrough, however, came from the development of efficient in vitro culture systems for primordial germ [...] Read more.
Avian genome editing has historically lagged behind mammalian research. This disparity is primarily due to a unique reproductive biology that precludes standard techniques like pronuclear injection. A pivotal breakthrough, however, came from the development of efficient in vitro culture systems for primordial germ cells (PGCs). This has established the chicken as a tractable and powerful model for genetic engineering. Our review chronicles the technological evolution this has enabled, from early untargeted methods to the precision of modern CRISPR-based systems. We then analyze the broad applications of these tools, which are now used to engineer disease resistance, enhance agricultural traits, and develop novel platforms such as surrogate hosts and oviduct bioreactors. Collectively, these advances have established PGC-based genome editing as a robust and versatile platform. Looking forward, emerging precision editors and the expansion of these techniques to other avian species are poised to drive the next wave of innovation in poultry science and biotechnology. Full article
(This article belongs to the Topic Genetic Engineering in Agriculture, 2nd Edition)
Show Figures

Figure 1

Back to TopTop