Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,279)

Search Parameters:
Keywords = wavelet transform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5203 KB  
Article
Mechanisms of Freak Wave Generation from Random Wave Evolution in 3D Island-Reef Topography
by Aimin Wang, Tao Zhou, Dietao Ding, Xinyu Ma and Li Zou
J. Mar. Sci. Eng. 2025, 13(10), 1926; https://doi.org/10.3390/jmse13101926 - 9 Oct 2025
Abstract
The mechanisms of freak wave generation in 3D island-reef topography are investigated. Four types of freak waves are investigated, based on the wavelet transform for examining the characteristics of freak waves and their mechanism. The freak waves come from a three-dimensional experimental terrain [...] Read more.
The mechanisms of freak wave generation in 3D island-reef topography are investigated. Four types of freak waves are investigated, based on the wavelet transform for examining the characteristics of freak waves and their mechanism. The freak waves come from a three-dimensional experimental terrain model in a random wave. The wavelet energy spectrum, scale-averaged and time-averaged wavelet spectrum are considered. A new parameter (scale-centroid wavelet spectrum) is defined, based on the wavelet transform algorithm, to quantitatively analyze and further estimate the energy transfer process. The results suggest that the occurrence of freak waves is associated with the gradual alignment of the phases of wave components. The nonlinear interaction in terms of wavelet cross-bispectrum implies that wave–wave interaction, especially with high-frequency components, is obviously enhanced during a freak wave occurrence. The energy transforms to a high frequency during a freak wave occurrence. The current result forms a definite indication that the occurrence of freak waves is caused by the combined effects of linear superposition and nonlinear interactions. Linear superposition begins to take effect long before the freak wave occurs, whereas nonlinear interactions primarily occur during the shorter period just before the freak wave forms. It provides an important reference for the prediction of abnormal waves. Full article
(This article belongs to the Special Issue Advancements in Marine Hydrodynamics and Structural Optimization)
Show Figures

Figure 1

20 pages, 4466 KB  
Article
SA-STGCN: A Spectral-Attentive Spatio-Temporal Graph Convolutional Network for Wind Power Forecasting with Wavelet-Enhanced Multi-Scale Learning
by Yakai Yang, Zhenqing Liu and Zhongze Yu
Energies 2025, 18(19), 5315; https://doi.org/10.3390/en18195315 - 9 Oct 2025
Abstract
Wind power forecasting remains a major challenge for renewable energy integration, as conventional models often perform poorly when confronted with complex atmospheric dynamics. This study addresses the problem by developing a Spectral-Attentive Spatio-Temporal Graph Convolutional Network (SA-STGCN) designed to capture the intricate temporal [...] Read more.
Wind power forecasting remains a major challenge for renewable energy integration, as conventional models often perform poorly when confronted with complex atmospheric dynamics. This study addresses the problem by developing a Spectral-Attentive Spatio-Temporal Graph Convolutional Network (SA-STGCN) designed to capture the intricate temporal and spatial dependencies of wind systems. The approach first applies wavelet transform decomposition to separate volatile wind signals into distinct frequency components, enabling more interpretable representation of rapidly changing conditions. A dynamic temporal attention mechanism is then employed to adaptively identify historical patterns that are most relevant for prediction, moving beyond the fixed temporal windows used in many existing methods. In addition, spectral graph convolution is conducted in the frequency domain to capture farm-wide spatial correlations, thereby modeling long-range atmospheric interactions that conventional localized methods overlook. Although this design increases computational complexity, it proves critical for representing wind variability. Evaluation on real-world datasets demonstrates that SA-STGCN achieves substantial accuracy improvements, with a mean absolute error of 1.52 and a root mean square error of 2.31. These results suggest that embracing more expressive architectures can yield reliable forecasting performance, supporting the stable integration of wind power into modern energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

35 pages, 441 KB  
Article
Two Versions of Dunkl Linear Canonical Wavelet Transforms and Applications
by Saifallah Ghobber and Hatem Mejjaoli
Mathematics 2025, 13(19), 3225; https://doi.org/10.3390/math13193225 - 8 Oct 2025
Abstract
Among the class of generalized Fourier transformations, the linear canonical transform is of crucial importance, mainly due to its higher degrees of freedom compared to the conventional Fourier and fractional Fourier transforms. In this paper, we will introduce and study two versions of [...] Read more.
Among the class of generalized Fourier transformations, the linear canonical transform is of crucial importance, mainly due to its higher degrees of freedom compared to the conventional Fourier and fractional Fourier transforms. In this paper, we will introduce and study two versions of wavelet transforms associated with the linear canonical Dunkl transform. More precisely, we investigate some applications for Dunkl linear canonical wavelet transforms. Next we will introduce and develop the harmonic analysis associated with the Dunkl linear canonical wavelet packets transform. We introduce and study three types of wavelet packets along with their associated wavelet transforms. For each of these transforms, we establish a Plancherel and a reconstruction formula, and we analyze the associated scale-discrete scaling functions. Full article
(This article belongs to the Section E: Applied Mathematics)
26 pages, 5742 KB  
Article
Multiscale Time Series Modeling in Energy Demand Prediction: A CWT-Aided Hybrid Model
by Elif Sezer, Güngör Yıldırım and Mahmut Temel Özdemir
Appl. Sci. 2025, 15(19), 10801; https://doi.org/10.3390/app151910801 - 8 Oct 2025
Abstract
In the contemporary energy landscape, the increasing demand for electricity and the inherent uncertainties associated with the integration of renewable resources have rendered the accurate and reliable forecasting of short- and long-term demand imperative. Energy demand forecasting, fundamentally a time series problem, can [...] Read more.
In the contemporary energy landscape, the increasing demand for electricity and the inherent uncertainties associated with the integration of renewable resources have rendered the accurate and reliable forecasting of short- and long-term demand imperative. Energy demand forecasting, fundamentally a time series problem, can be inherently complex, nonlinear, and multi-scale. Therefore, interest in artificial intelligence–based methods that provide high performance for short- and long-term forecasting, rather than traditional methods, has increased in order to solve these problems. In this study, a hybrid artificial intelligence model based on LSTM, GRU, and Random Forest, utilizing a distinct mechanism to address these types of problems, is proposed. The Multi-Scale Sliding Window (MSSW) approach was utilized for the model’s input data to capture the dynamics of the time series at different scales. The optimization of windows was conducted using the Continuous Wavelet Transform (CWT) method to determine the optimal window sizes within the MSSW structure in a data-driven manner. Experimental studies on Panama’s real energy demand data from 2015 to 2020 show that the CWT-aided MSSW-hybrid model forecasts better with lower error rates (0.007 MAE, 0.009 RMSE, 1.051% MAPE) than single models and manually determined window sizes. The results of the study demonstrate the importance of hybrid structures and window optimization in energy demand forecasting. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

26 pages, 6000 KB  
Article
Leakage Fault Diagnosis of Wind Tunnel Valves Using Wavelet Packet Analysis and Vision Transformer-Based Deep Learning
by Fan Yi, Ruoxi Zhong, Wenjie Zhu, Run Zhou, Ying Wang and Li Guo
Mathematics 2025, 13(19), 3195; https://doi.org/10.3390/math13193195 - 6 Oct 2025
Viewed by 183
Abstract
High-frequency vibrations in annular gap type pressure-regulating valves of wind tunnels can induce fatigue, fracture, and operational failures, posing challenges to safe and reliable operation. This study proposes a hybrid leakage fault diagnosis framework that integrates wavelet packet-based signal analysis with advanced deep [...] Read more.
High-frequency vibrations in annular gap type pressure-regulating valves of wind tunnels can induce fatigue, fracture, and operational failures, posing challenges to safe and reliable operation. This study proposes a hybrid leakage fault diagnosis framework that integrates wavelet packet-based signal analysis with advanced deep learning techniques. Time-domain acceleration signals collected from multiple sensors are processed to extract maximum component energy and its variation rate, identified as sensitive and robust indicators for leakage detection. A fluid–solid coupled finite element model of the valve system further validates the reliability of these indicators under different operational scenarios. Based on this foundation, a Vision Transformer (ViT)-based model is trained on a dedicated database encompassing multiple leakage conditions and sensor arrangements. Comparative evaluation demonstrates that the ViT model outperforms conventional deep learning architectures in terms of accuracy, stability, and predictive reliability. The integrated framework enables fast, automated, and robust leakage diagnosis, providing a comprehensive solution to enhance the monitoring, maintenance, and operational safety of wind tunnel valve systems. Full article
(This article belongs to the Special Issue Numerical Analysis and Finite Element Method with Applications)
Show Figures

Figure 1

19 pages, 4966 KB  
Article
A Study on Geometrical Consistency of Surfaces Using Partition-Based PCA and Wavelet Transform in Classification
by Vignesh Devaraj, Thangavel Palanisamy and Kanagasabapathi Somasundaram
AppliedMath 2025, 5(4), 134; https://doi.org/10.3390/appliedmath5040134 - 3 Oct 2025
Viewed by 164
Abstract
The proposed study explores the consistency of the geometrical character of surfaces under scaling, rotation and translation. In addition to its mathematical significance, it also exhibits advantages over image processing and economic applications. In this paper, the authors used partition-based principal component analysis [...] Read more.
The proposed study explores the consistency of the geometrical character of surfaces under scaling, rotation and translation. In addition to its mathematical significance, it also exhibits advantages over image processing and economic applications. In this paper, the authors used partition-based principal component analysis similar to two-dimensional Sub-Image Principal Component Analysis (SIMPCA), along with a suitably modified atypical wavelet transform in the classification of 2D images. The proposed framework is further extended to three-dimensional objects using machine learning classifiers. To strengthen fairness, we benchmarked against both Random Forest (RF) and Support Vector Machine (SVM) classifiers using nested cross-validation, showing consistent gains when TIFV is included. In addition, we carried out a robustness analysis by introducing Gaussian noise to the intensity channel, confirming that TIFV degrades much more gracefully compared to traditional descriptors. Experimental results demonstrate that the method achieves improved performance compared to traditional hand-crafted descriptors such as measured values and histogram of oriented gradients. In addition, it is found to be useful that this proposed algorithm is capable of establishing consistency locally, which is never possible without partition. However, a reasonable amount of computational complexity is reduced. We note that comparisons with deep learning baselines are beyond the scope of this study, and our contribution is positioned within the domain of interpretable, affine-invariant descriptors that enhance classical machine learning pipelines. Full article
Show Figures

Figure 1

17 pages, 2215 KB  
Article
Fault Location of Generator Stator with Single-Phase High-Resistance Grounding Fault Based on Signal Injection
by Binghui Lei, Yifei Wang, Zongzhen Yang, Lijiang Ma, Xinzhi Yang, Yanxun Guo, Shuai Xu and Zhiping Cheng
Sensors 2025, 25(19), 6132; https://doi.org/10.3390/s25196132 - 3 Oct 2025
Viewed by 251
Abstract
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, [...] Read more.
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, singular value decomposition (SVD) denoising, and discrete wavelet transform (DWT). A DC voltage signal is then injected into the stator winding, and the voltage and current signals at both terminals are collected. These signals undergo denoising using SVD, followed by DWT, to identify the arrival time of the traveling waves. Fault location is determined based on the reflection and refraction of these waves within the winding. Simulation results demonstrate that this method achieves high accuracy in fault location, even with fault resistances up to 5000 Ω. The method offers a reliable and effective solution for locating high-resistance faults in generator stator windings without requiring winding parameters, demonstrating strong potential for practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 4303 KB  
Article
LMCSleepNet: A Lightweight Multi-Channel Sleep Staging Model Based on Wavelet Transform and Muli-Scale Convolutions
by Jiayi Yang, Yuanyuan Chen, Tingting Yu and Ying Zhang
Sensors 2025, 25(19), 6065; https://doi.org/10.3390/s25196065 - 2 Oct 2025
Viewed by 173
Abstract
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from [...] Read more.
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from multi-channel sleep data remains limited; (2) excessive model parameters hinder efficiency improvements. To address these challenges, this work proposes a lightweight multi-channel sleep staging network (LMCSleepNet). LMCSleepNet is composed of four modules. The first module enhances frequency domain features through continuous wavelet transform. The second module extracts time–frequency features using multi-scale convolutions. The third module optimizes ResNet18 with depthwise separable convolutions to reduce parameters. The fourth module improves spatial correlation using the Convolutional Block Attention Module (CBAM). On the public datasets SleepEDF-20, SleepEDF-78, and LMCSleepNet, respectively, LMCSleepNet achieved classification accuracies of 88.2% (κ = 0.84, MF1 = 82.4%) and 84.1% (κ = 0.77, MF1 = 77.7%), while reducing model parameters to 1.49 M. Furthermore, experiments validated the influence of temporal sampling points in wavelet time–frequency maps on sleep classification performance (accuracy, Cohen’s kappa, and macro-average F1-score) and the influence of multi-scale dilated convolution module fusion methods on classification performance. LMCSleepNet is an efficient lightweight model for extracting and integrating multimodal features from multichannel Polysomnography (PSG) data, which facilitates its application in resource-constrained scenarios. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

23 pages, 17632 KB  
Article
Multipath Identification and Mitigation for Enhanced GNSS Positioning in Urban Environments
by Qianxia Li, Xue Hou, Yuanbin Ye, Wenfeng Zhang, Qingsong Li and Yuezhen Cai
Sensors 2025, 25(19), 6061; https://doi.org/10.3390/s25196061 - 2 Oct 2025
Viewed by 235
Abstract
Due to the increasing demand for accurate and robust GNSS positioning for location-based services (LBS) in urban regions, the impacts prevalent in metropolitan areas, like multipath reflections and various interferences, have become persistent challenges. Consequently, developing effective strategies to address these sophisticated influences [...] Read more.
Due to the increasing demand for accurate and robust GNSS positioning for location-based services (LBS) in urban regions, the impacts prevalent in metropolitan areas, like multipath reflections and various interferences, have become persistent challenges. Consequently, developing effective strategies to address these sophisticated influences has become both a primary research focus and a shared priority. In this paper, the authors explore an approach to identify and mitigate the drawbacks arising from multipath effects in urban positioning. Unlike conventional ways for building complex models, an adaptive data-driven methodology is proposed to identify the fingerprints of a multipath in GNSS observations. This approach utilizes the Fourier transform (FT) to examine code multipath and other error sources in terms of frequency, as represented by the power spectrum. Wavelet decomposition and signal spectrum methods are subsequently applied to seek traces of code multipath in multilayer decompositions. Based on the exhibited multipath features, the impacts of multipath in GNSS observations are detected and mitigated in the reconstructed observations. The proposed method is validated for both static and dynamic positioning scenarios, demonstrating seamless integration with existing positioning models. The feasibility has been verified through a series of experiments and tests under urban environments using navigation terminals and smartphones. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation—Second Edition)
Show Figures

Figure 1

15 pages, 1392 KB  
Article
Optimal Source Selection for Distributed Bearing Fault Classification Using Wavelet Transform and Machine Learning Algorithms
by Ramin Rajabioun and Özkan Atan
Appl. Sci. 2025, 15(19), 10631; https://doi.org/10.3390/app151910631 - 1 Oct 2025
Viewed by 171
Abstract
Early and accurate detection of distributed bearing faults is essential to prevent equipment failures and reduce downtime in industrial environments. This study explores the optimal selection of input signal sources for high-accuracy distributed fault classification, employing wavelet transform and machine learning algorithms. The [...] Read more.
Early and accurate detection of distributed bearing faults is essential to prevent equipment failures and reduce downtime in industrial environments. This study explores the optimal selection of input signal sources for high-accuracy distributed fault classification, employing wavelet transform and machine learning algorithms. The primary contribution of this work is to demonstrate that robust distributed bearing fault diagnosis can be achieved through optimal sensor fusion and wavelet-based feature engineering, without the need for deep learning or high-dimensional inputs. This approach provides interpretable, computationally efficient, and generalizable fault classification, setting it apart from most existing studies that rely on larger models or more extensive data. All experiments were conducted in a controlled laboratory environment across multiple loads and speeds. A comprehensive dataset, including three-axis vibration, stray magnetic flux, and two-phase current signals, was used to diagnose six distinct bearing fault conditions. The wavelet transform is applied to extract frequency-domain features, capturing intricate fault signatures. To identify the most effective input signal combinations, we systematically evaluated Random Forest, XGBoost, and Support Vector Machine (SVM) models. The analysis reveals that specific signal pairs significantly enhance classification accuracy. Notably, combining vibration signals with stray magnetic flux consistently achieved the highest performance across models, with Random Forest reaching perfect test accuracy (100%) and SVM showing robust results. These findings underscore the importance of optimal source selection and wavelet-transformed features for improving machine learning model performance in bearing fault classification tasks. While the results are promising, validation in real-world industrial settings is needed to fully assess the method’s practical reliability and impact on predictive maintenance systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 930 KB  
Article
Investigation of the MobileNetV2 Optimal Feature Extraction Layer for EEG-Based Dementia Severity Classification: A Comparative Study
by Noor Kamal Al-Qazzaz, Sawal Hamid Bin Mohd Ali and Siti Anom Ahmad
Algorithms 2025, 18(10), 620; https://doi.org/10.3390/a18100620 - 1 Oct 2025
Viewed by 144
Abstract
Diagnosing dementia and recognizing substantial cognitive decline are challenging tasks. Thus, the objective of this study was to classify electroencephalograms (EEGs) recorded during a working memory task in 15 patients with mild cognitive impairment (MCogImp), 5 patients with vascular dementia (VasD), and 15 [...] Read more.
Diagnosing dementia and recognizing substantial cognitive decline are challenging tasks. Thus, the objective of this study was to classify electroencephalograms (EEGs) recorded during a working memory task in 15 patients with mild cognitive impairment (MCogImp), 5 patients with vascular dementia (VasD), and 15 healthy controls (NC). Before creating spectrogram pictures from the EEG dataset, the data were subjected to preprocessing, which included preprocessing using conventional filters and the discrete wavelet transformation. The convolutional neural network (CNN) MobileNetV2 was employed in our investigation to identify features and assess the severity of dementia. The features were extracted from five layers of the MobileNetV2 CNN architecture—convolutional layers (‘Conv-1’), batch normalization (‘Conv-1-bn’), clipped ReLU (‘out-relu’), 2D Global Average Pooling (‘global-average-pooling2d1’), and fully connected (‘Logits’) layers. This was carried out to find the efficient features layer for dementia severity from EEGs. Feature extraction from MobileNetV2’s five layers was carried out using a decision tree (DT) and k-nearest neighbor (KNN) machine learning (ML) classifier, in conjunction with a MobileNetV2 deep learning (DL) network. The study’s findings show that the DT classifier performed best using features derived from MobileNetV2 with the 2D Global Average Pooling (global-average-pooling2d-1) layer, achieving an accuracy score of 95.9%. Second place went to the characteristics of the fully connected (Logits) layer, which achieved a score of 95.3%. The findings of this study endorse the utilization of deep processing algorithms, offering a viable approach for improving early dementia identification with high precision, hence facilitating the differentiation among NC individuals, VasD patients, and MCogImp patients. Full article
(This article belongs to the Special Issue Machine Learning in Medical Signal and Image Processing (3rd Edition))
Show Figures

Figure 1

30 pages, 769 KB  
Article
Mathematical Generalization of Kolmogorov-Arnold Networks (KAN) and Their Variants
by Fray L. Becerra-Suarez, Ana G. Borrero-Ramírez, Edwin Valencia-Castillo and Manuel G. Forero
Mathematics 2025, 13(19), 3128; https://doi.org/10.3390/math13193128 - 30 Sep 2025
Viewed by 660
Abstract
Neural networks have become a fundamental tool for solving complex problems, from image processing and speech recognition to time series prediction and large-scale data classification. However, traditional neural architectures suffer from interpretability problems due to their opaque representations and lack of explicit interaction [...] Read more.
Neural networks have become a fundamental tool for solving complex problems, from image processing and speech recognition to time series prediction and large-scale data classification. However, traditional neural architectures suffer from interpretability problems due to their opaque representations and lack of explicit interaction between linear and nonlinear transformations. To address these limitations, Kolmogorov–Arnold Networks (KAN) have emerged as a mathematically grounded approach capable of efficiently representing complex nonlinear functions. Based on the principles established by Kolmogorov and Arnold, KAN offer an alternative to traditional architectures, mitigating issues such as overfitting and lack of interpretability. Despite their solid theoretical basis, practical implementations of KAN face challenges, such as optimal function selection and computational efficiency. This paper provides a systematic review that goes beyond previous surveys by consolidating the diverse structural variants of KAN (e.g., Wavelet-KAN, Rational-KAN, MonoKAN, Physics-KAN, Linear Spline KAN, and Orthogonal Polynomial KAN) into a unified framework. In addition, we emphasize their mathematical foundations, compare their advantages and limitations, and discuss their applicability across domains. From this review, three main conclusions can be drawn: (i) spline-based KAN remain the most widely used due to their stability and simplicity, (ii) rational and wavelet-based variants provide greater expressivity but introduce numerical challenges, and (iii) emerging approaches such as Physics-KAN and automatic basis selection open promising directions for scalability and interpretability. These insights provide a benchmark for future research and practical implementations of KAN. Full article
(This article belongs to the Special Issue Machine Learning Applications in Image Processing and Computer Vision)
Show Figures

Figure 1

19 pages, 5891 KB  
Article
MS-YOLOv11: A Wavelet-Enhanced Multi-Scale Network for Small Object Detection in Remote Sensing Images
by Haitao Liu, Xiuqian Li, Lifen Wang, Yunxiang Zhang, Zitao Wang and Qiuyi Lu
Sensors 2025, 25(19), 6008; https://doi.org/10.3390/s25196008 - 29 Sep 2025
Viewed by 675
Abstract
In remote sensing imagery, objects smaller than 32×32 pixels suffer from three persistent challenges that existing detectors inadequately resolve: (1) their weak signal is easily submerged in background clutter, causing high miss rates; (2) the scarcity of valid pixels yields few [...] Read more.
In remote sensing imagery, objects smaller than 32×32 pixels suffer from three persistent challenges that existing detectors inadequately resolve: (1) their weak signal is easily submerged in background clutter, causing high miss rates; (2) the scarcity of valid pixels yields few geometric or textural cues, hindering discriminative feature extraction; and (3) successive down-sampling irreversibly discards high-frequency details, while multi-scale pyramids still fail to compensate. To counteract these issues, we propose MS-YOLOv11, an enhanced YOLOv11 variant that integrates “frequency-domain detail preservation, lightweight receptive-field expansion, and adaptive cross-scale fusion.” Specifically, a 2D Haar wavelet first decomposes the image into multiple frequency sub-bands to explicitly isolate and retain high-frequency edges and textures while suppressing noise. Each sub-band is then processed independently by small-kernel depthwise convolutions that enlarge the receptive field without over-smoothing. Finally, the Mix Structure Block (MSB) employs the MSPLCK module to perform densely sampled multi-scale atrous convolutions for rich context of diminutive objects, followed by the EPA module that adaptively fuses and re-weights features via residual connections to suppress background interference. Extensive experiments on DOTA and DIOR demonstrate that MS-YOLOv11 surpasses the baseline in mAP@50, mAP@95, parameter efficiency, and inference speed, validating its targeted efficacy for small-object detection. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 2459 KB  
Article
FFMamba: Feature Fusion State Space Model Based on Sound Event Localization and Detection
by Yibo Li, Dongyuan Ge, Jieke Xu and Xifan Yao
Electronics 2025, 14(19), 3874; https://doi.org/10.3390/electronics14193874 - 29 Sep 2025
Viewed by 241
Abstract
Previous studies on Sound Event Localization and Detection (SELD) have primarily focused on CNN- and Transformer-based designs. While CNNs possess local receptive fields, making it difficult to capture global dependencies over long sequences, Transformers excel at modeling long-range dependencies but have limited sensitivity [...] Read more.
Previous studies on Sound Event Localization and Detection (SELD) have primarily focused on CNN- and Transformer-based designs. While CNNs possess local receptive fields, making it difficult to capture global dependencies over long sequences, Transformers excel at modeling long-range dependencies but have limited sensitivity to local time–frequency features. Recently, the VMamba architecture, built upon the Visual State Space (VSS) model, has shown great promise in handling long sequences, yet it remains limited in modeling local spatial details. To address this issue, we propose a novel state space model with an attention-enhanced feature fusion mechanism, termed FFMamba, which balances both local spatial modeling and long-range dependency capture. At a fine-grained level, we design two key modules: the Multi-Scale Fusion Visual State Space (MSFVSS) module and the Wavelet Transform-Enhanced Downsampling (WTED) module. Specifically, the MSFVSS module integrates a Multi-Scale Fusion (MSF) component into the VSS framework, enhancing its ability to capture both long-range temporal dependencies and detailed local spatial information. Meanwhile, the WTED module employs a dual-branch design to fuse spatial and frequency domain features, improving the richness of feature representations. Comparative experiments were conducted on the DCASE2021 Task 3 and DCASE2022 Task 3 datasets. The results demonstrate that the proposed FFMamba model outperforms recent approaches in capturing long-range temporal dependencies and effectively integrating multi-scale audio features. In addition, ablation studies confirmed the effectiveness of the MSFVSS and WTED modules. Full article
Show Figures

Figure 1

50 pages, 4484 KB  
Systematic Review
Bridging Data and Diagnostics: A Systematic Review and Case Study on Integrating Trend Monitoring and Change Point Detection for Wind Turbines
by Abu Al Hassan and Phong Ba Dao
Energies 2025, 18(19), 5166; https://doi.org/10.3390/en18195166 - 28 Sep 2025
Viewed by 304
Abstract
Wind turbines face significant operational challenges due to their complex electromechanical systems, exposure to harsh environmental conditions, and high maintenance costs. Reliable structural health monitoring and condition monitoring are therefore essential for early fault detection, minimizing downtime, and optimizing maintenance strategies. Traditional approaches [...] Read more.
Wind turbines face significant operational challenges due to their complex electromechanical systems, exposure to harsh environmental conditions, and high maintenance costs. Reliable structural health monitoring and condition monitoring are therefore essential for early fault detection, minimizing downtime, and optimizing maintenance strategies. Traditional approaches typically rely on either Trend Monitoring (TM) or Change Point Detection (CPD). TM methods track the long-term behaviour of process parameters, using statistical analysis or machine learning (ML) to identify abnormal patterns that may indicate emerging faults. In contrast, CPD techniques focus on detecting abrupt changes in time-series data, identifying shifts in mean, variance, or distribution, and providing accurate fault onset detection. While each approach has strengths, they also face limitations: TM effectively identifies fault type but lacks precision in timing, while CPD excels at locating fault occurrence but lacks detailed fault classification. This review critically examines the integration of TM and CPD methods for wind turbine diagnostics, highlighting their complementary strengths and weaknesses through an analysis of widely used TM techniques (e.g., Fast Fourier Transform, Wavelet Transform, Hilbert–Huang Transform, Empirical Mode Decomposition) and CPD methods (e.g., Bayesian Online Change Point Detection, Kullback–Leibler Divergence, Cumulative Sum). By combining both approaches, diagnostic accuracy can be enhanced, leveraging TM’s detailed fault characterization with CPD’s precise fault timing. The effectiveness of this synthesis is demonstrated in a case study on wind turbine blade fault diagnosis. Results shows that TM–CPD integration enhances early detection through coupling vibration and frequency trend analysis with robust statistical validation of fault onset. Full article
Show Figures

Figure 1

Back to TopTop