Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (469)

Search Parameters:
Keywords = wedge effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3262 KB  
Article
Comparison of a Multi-Scenario Robustness Evaluation Method with Measurements for Proton Teletherapy
by Qiangxing Yang, Michael F. Moyers and Zhuangming Shen
Cancers 2025, 17(17), 2927; https://doi.org/10.3390/cancers17172927 (registering DOI) - 6 Sep 2025
Abstract
Background/Objectives: Multi-scenario calculational methods have been used to evaluate proton teletherapy plan robustness but few studies have been performed to determine the accuracy of these calculational methods. This study evaluates a multi-scenario method by comparing calculations to measurements made in phantoms that [...] Read more.
Background/Objectives: Multi-scenario calculational methods have been used to evaluate proton teletherapy plan robustness but few studies have been performed to determine the accuracy of these calculational methods. This study evaluates a multi-scenario method by comparing calculations to measurements made in phantoms that simulate the effects of possible uncertainties. Methods: Plans were made using four phantoms in which the delivered dose was highly sensitive to positional and penetration uncertainties. The effects of alignment and penetration uncertainties on the dose distributions of each of those phantoms were simulated by performing calculations using nine different uncertainty scenarios and comparing the calculations to measurements with induced physical alignment displacements. Measured dose distributions were obtained by exposing films placed inside the phantoms and extracting multiple linear profiles. The maximum and minimum doses obtained for each of the calculational scenarios were compared with the measured dose profiles. In addition, comparisons of DVHs for nominal and uncertainty scenarios were performed. Results: The results showed that, under the influence of uncertainties, the minimum dose for the four phantoms decreased by more than 20 Gy, the V95% coverage fluctuated by more than 10%, but the maximum dose parameter changed by less than 5 Gy. This was expected, as no margins for uncertainties were applied around the targets. The envelope bounded by the maximum and minimum possible calculated doses contained most of the measurements, although the shapes of the dose profiles displayed some mismatches for wedge and head phantoms. There were a few points where the measured maximum dose for bone and lung slab phantom cases was slightly higher than the maximum dose calculated from the nine scenarios. Conclusions: This study demonstrates that a nine-scenario method can adequately evaluate the robustness of simple mono-directional plans containing heterogeneities. Full article
(This article belongs to the Special Issue The Advance of Pencil Beam Scanning Proton Beam Therapy in Cancers)
Show Figures

Figure 1

22 pages, 7254 KB  
Article
Chloride Diffusion and Corrosion Assessment in Cracked Marine Concrete Bridges Using Extracted Crack Morphologies
by Xixi Wang, Pingming Huang, Yangguang Yuan, Di Wang, Yulong Yang and Xing Liu
Buildings 2025, 15(17), 3214; https://doi.org/10.3390/buildings15173214 - 5 Sep 2025
Abstract
Chloride-induced reinforcement corrosion primarily contributes to the deterioration of concrete structures. Cracks provide natural pathways for chloride ions, which accelerate the corrosion process and shorten the service life of structures. In this study, the morphologies of flexural cracks in the pure bending section [...] Read more.
Chloride-induced reinforcement corrosion primarily contributes to the deterioration of concrete structures. Cracks provide natural pathways for chloride ions, which accelerate the corrosion process and shorten the service life of structures. In this study, the morphologies of flexural cracks in the pure bending section are extracted through destructive testing, and a crack database containing 51 samples is established. These samples are defined as four crack morphologies as follows: equal-width, wedge-shaped, two-step, and three-step cracks. Subsequently, cracked concrete models were constructed, followed by a full factorial design containing 144 operating conditions to investigate the effects of crack morphology, width, depth, and their interactions on chloride diffusion. The results show that crack morphology significantly affects chloride diffusion behavior. The equal-width crack model exhibits the highest chloride diffusion rate, whereas the wedge-shaped crack model exhibits the lowest. At a crack width of 0.15 mm and a depth of 35 mm, the maximum relative error in chloride concentration between the two models is 94.5%. As the crack depth increases, the effect of crack morphology on chloride diffusion becomes increasingly significant, whereas increasing crack width tends to diminish this effect. Additionally, a rebar corrosion initiation assessment method based on the guarantee rate is proposed, and the effect of crack morphology on the corrosion initiation time is analyzed via a case study. Full article
(This article belongs to the Section Building Structures)
21 pages, 6516 KB  
Article
Investigation of Borehole Network Parameters for Rock Breaking via High-Pressure Gas Expansion in Subway Safety Passages of Environmentally Sensitive Zones
by Dunwen Liu, Jimin Zhong, Yupeng Zhang and Yuhui Jin
Buildings 2025, 15(17), 3158; https://doi.org/10.3390/buildings15173158 - 2 Sep 2025
Viewed by 230
Abstract
To address the challenge of determining the borehole layout scheme in the practical application of high-pressure gas expansion rock breaking, this study takes the excavation of the safety passage at Kaixuan Road Station on the North Extension Line 2 of Chongqing Metro Line [...] Read more.
To address the challenge of determining the borehole layout scheme in the practical application of high-pressure gas expansion rock breaking, this study takes the excavation of the safety passage at Kaixuan Road Station on the North Extension Line 2 of Chongqing Metro Line 18 as the engineering background. The rock-breaking capacity was evaluated by analyzing the damaged zone volume caused by gas expansion using FLAC3D 6.0 numerical simulation software, and vibration monitoring was conducted for the historical buildings on the surface. This study revealed the following: (1) When the borehole depth is 1.2 m and the charge length is 0.6 m, the optimal angle is 70°, with the optimal vertical and horizontal spacing between holes being 1200 mm and 2000 mm, respectively. (2) The numerical simulations indicated that by adjusting the charge density, the optimized sandstone borehole network parameters could be applied to mudstone strata, and the rock-breaking effect was similar. The difference in the volume of the damaged zones obtained in the two strata was less than 3%. (3) The vibration analysis demonstrated that the peak particle velocity generated by high-pressure gas expansion rock fracturing at the ancient building directly above was 0.06316 cm/s, which was lower than the threshold value of 0.1 cm/s and approximately 67.95% lower than that of explosive blasting. Furthermore, when the tunnel depth exceeded 29 m, the vibration velocity of surface structures remained within the safety range. The results verified the feasibility of applying the same borehole network parameters to different strata, providing theoretical support for the practical application of high-pressure gas expansion rock fracturing technology in engineering projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 2796 KB  
Article
Wedge Osteotomy of the Maxilla for the Treatment of Obstructive Sleep Apnea (OSA) Through Virtual Surgical Planning, CAD/CAM Technology: Consecutive Case Series
by Antonio Scarano, Roberto Pistilli, Flavio Andrea Govoni, Silvio Di Nezza, Luca Tarascio, Filippo Pica, Luca De Paolis, Alessandra Celebrini, Vinicio Magliacani, Gianluca Bellocchi and Vincenzo Antonio Marcelli
Surgeries 2025, 6(3), 74; https://doi.org/10.3390/surgeries6030074 - 30 Aug 2025
Viewed by 309
Abstract
Orthognathic surgery, particularly maxillomandibular advancement (MMA), has emerged as an effective therapeutic option for patients with moderate to severe OSA who are refractory to conventional treatments. The wedge osteotomy of the maxilla, often performed in combination with mandibular surgery, can be a surgical [...] Read more.
Orthognathic surgery, particularly maxillomandibular advancement (MMA), has emerged as an effective therapeutic option for patients with moderate to severe OSA who are refractory to conventional treatments. The wedge osteotomy of the maxilla, often performed in combination with mandibular surgery, can be a surgical treatment for obstructive sleep apnea (OSA). This case series report describes 6 OSA patients without anteroposterior maxillary deficiency who were treated with wedge osteotomy of the maxilla. Material and Methods: We conducted a retrospective analysis of 6 patients who underwent maxillomandibular advancement (MMA) for obstructive sleep apnea (OSA), all operated on consecutively by the same surgeon between 2018 and 2024 at the Maxillofacial Surgery of San Camillo-Forlanini Hospital, in Rome, Italy. Patients were evaluated using a CAD/CAM-assisted approach. A pre- and postoperative comparative analysis was conducted to assess the effectiveness of the surgical treatment in improving OSA-related parameters. Maxillary wedge osteotomy and bilateral sagittal split osteotomies (BSSO) of the mandibular ramus were digitally planned. Results: The comparison between preoperative and postoperative CT scans, along with 3D reconstructions generated using dedicated software, revealed a counterclockwise rotation of the occlusal plane, resulting in a mandibular advancement of approximately 13 mm. The CT shows a significant increase in airway volume following the skeletal repositioning. The airway volume increased from 20.665 ± 546 mm3 to 27.177 ± 446 mm3. Conclusions: Counterclockwise rotational orthognathic surgery without maxillary advancement has been shown to effectively enlarge the posterior pharyngeal space while also delivering excellent esthetic outcomes. Full article
Show Figures

Figure 1

19 pages, 5591 KB  
Article
The Evolution Mechanism and Stability Prediction of the Wanshuitian Landslide, an Oblique-Dip Slope Wedge Landslide in the Three Gorges Reservoir Area
by Chu Xu, Chang Zhou and Wei Huang
Appl. Sci. 2025, 15(16), 9194; https://doi.org/10.3390/app15169194 - 21 Aug 2025
Viewed by 344
Abstract
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, [...] Read more.
The Zigui Basin, located in the Three Gorges Reservoir Area, has developed numerous landslides due to its interlayering of sandstone and mudstone, geological structure, and reservoir operations. This study identifies a fourth type of landslide failure mode: an oblique-dip slope wedge (OdSW) landslide, based on the Wanshuitian landslide. Following four heavy rainfall events from 3 to 13 July 2024, this landslide exhibited significant deformation on the 17th and was completely destroyed within 40 min. The dimensions of the landslide were 350 m in length, 160 m in width, and 20 m in thickness, with a volume estimated at 8.0 × 105 m3. The characteristics of landslide deformation and the changes in moisture content within the shallow slide body were ascertained using unmanned aerial vehicles, moisture meters, and mobile phone photography. The landslide was identified to have occurred within the weathered residual layer of mudstone, situated between two sandstone layers, with the eastern boundary defined by an inclined rock layer. Upon transitioning into the accelerated deformation stage, the landslide initially exhibited uniform overall sliding deformation, culminating in accelerated deformation destruction. The dip structure created terrain disparities, resulting in a step-like terrain on the left bank and gentler slopes on the right bank, with interbedded soil and rock in a shallow layer, because the interlayered soft and hard geological conditions caused varied weathering and erosion patterns on the riverbank slopes. The interbedded weak–hard stratum layer fostered the development of the oblique-dip slope wedge landslide. Based on the improved Green–Ampt model, we developed a stability prediction methodology for an oblique-dip slope wedge landslide and determined the rainfall infiltration depth threshold of the Wanshuitian landslide (9.8 m). This study aimed not merely to sharpen the evolution mechanism and stability prediction of the Wanshuitian landslide but also to formulate more effective landslide-monitoring strategies and emergency management measures. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 3213 KB  
Article
Limit Analysis of Shear Failure in Concrete Slab–Wall Joints of Overlapped Subway Stations
by Qiang Chen, De Zhou, Taoxiang Feng and Chen Liu
Mathematics 2025, 13(16), 2655; https://doi.org/10.3390/math13162655 - 18 Aug 2025
Viewed by 274
Abstract
In subway stations constructed using the cut-and-cover method, an increasing number of projects are adopting the form of precast components combined with on-site assembly. However, analysis of the novel structural elements within such overlapped subway stations remains inadequate. To simulate the shear failure [...] Read more.
In subway stations constructed using the cut-and-cover method, an increasing number of projects are adopting the form of precast components combined with on-site assembly. However, analysis of the novel structural elements within such overlapped subway stations remains inadequate. To simulate the shear failure mechanism at slab–wall joints, the structural behavior of these joints in overlapped subway stations is idealized as a rigid die stamping problem. An admissible failure mechanism is constructed, comprising a rigid wedge zone and a vertical tensile fracture perpendicular to a smooth base. The limit analysis approach is adopted, a two-dimensional velocity field is constructed, and the upper-bound theorem is applied to determine the bearing capacity of these joints under strip loading, utilizing a modified Coulomb yield criterion incorporating a small tensile stress cutoff. The failure mechanism proposed on the basis of an engineering case is validated through analytical calculations and parametric studies. Finally, a parametric analysis is conducted to investigate the influence of factors such as the geometric configuration of the slab–wall joints and the tensile and compressive strengths of concrete on their ultimate bearing capacity. The results obtained can provide an effective reference for the design and construction of precast slab–wall joints in future overlapped subway station projects. Full article
Show Figures

Figure 1

22 pages, 7832 KB  
Article
Investigation into the Dynamic Evolution Characteristics of Gear Injection Lubrication Based on the CFD-VOF Model
by Yihong Gu, Xinxing Zhang, Lin Li and Qing Yan
Processes 2025, 13(8), 2540; https://doi.org/10.3390/pr13082540 - 12 Aug 2025
Viewed by 375
Abstract
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of [...] Read more.
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of oil-jet lubrication is developed based on computational fluid dynamics (CFD). The model integrates the Volume of Fluid (VOF) multiphase flow method with the shear stress transport (SST) k−ω turbulence model. This framework enables the accurate capture of oil-jet interface fragmentation, reattachment, and turbulence-coupled behavior within the gear meshing region. A parametric study is conducted on oil injection velocities ranging from 20 to 50 m/s to elucidate the coupling mechanisms between geometric configuration and flow dynamics, as well as their impacts on oil film evolution, energy dissipation, and thermal management. The results reveal that the proposed method can reveal the dynamic evolution characteristics of the gear injection lubrication. Adopting an appropriately moderate injection velocity (30 m/s) improves oil film coverage and continuity, with the lubricant transitioning from discrete droplets to a dense wedge-shaped film within the meshing zone. Optimal lubrication performance is achieved at this velocity, where oil shear-carrying capacity and kinetic energy utilization efficiency are maximized, while excessive turbulent kinetic energy dissipation is effectively suppressed. Dynamic monitoring data at point P further corroborate that a well-tuned injection velocity stabilizes lubricant-velocity fluctuations and improves lubricant oil distribution, thereby promoting consistent oil film formation and more efficient heat transfer. The proposed closed-loop collaborative framework—comprising model initialization, numerical solution, and post-processing—together with the introduced quantitative evaluation metrics, provides a solid theoretical foundation and engineering reference for structural optimization, energy control, and thermal reliability design of gearbox lubrication systems. This work offers important insights into precision lubrication of high-speed transmissions and contributes to the sustainable, green development of industrial machinery. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

18 pages, 3978 KB  
Article
Effect of Anisotropy on Saline Groundwater Pumping Efficiency for Seawater Intrusion Control
by Youcheng Lv, Bengu Yang, Hongjian Ai, Chongjing Yang, Jie Dong, Rifei Kang, Wenxiang Xu and Peng Yang
Water 2025, 17(16), 2359; https://doi.org/10.3390/w17162359 - 8 Aug 2025
Viewed by 324
Abstract
Hydraulic conductivity anisotropy critically controls seawater intrusion management in coastal aquifers, and yet its impact on negative hydraulic barriers remains poorly understood. Using three-dimensional density-dependent modeling, this study reveals how varying ratios between horizontal and vertical conductivity influence barrier effectiveness. The results show [...] Read more.
Hydraulic conductivity anisotropy critically controls seawater intrusion management in coastal aquifers, and yet its impact on negative hydraulic barriers remains poorly understood. Using three-dimensional density-dependent modeling, this study reveals how varying ratios between horizontal and vertical conductivity influence barrier effectiveness. The results show that systems where vertical conductivity dominates enhance horizontal flow, but retain more residual salt, while horizontally dominated systems initially accelerate saltwater wedge retreat, but subsequently cause interface destabilization and inland reinvasion. Pumping rate and well depth interact significantly with these anisotropy effects, with higher pumping rates reducing anisotropy-dependent variations and deeper wells activating density-driven convection processes. Optimal barrier design requires careful consideration of competing objectives, as conditions favoring interface stability differ from those maximizing salt removal. These findings establish design principles for hydraulic barriers in anisotropic coastal aquifers, providing critical insights for managing seawater intrusion in increasingly stressed groundwater systems. Full article
Show Figures

Figure 1

17 pages, 502 KB  
Article
Influence of Various Cooking Methods on Selenium Concentrations in Commonly Consumed Seafood Species in Thailand
by Narisa Rueangsri, Kunchit Judprasong, Piyanut Sridonpai, Nunnapus Laitip, Jörg Feldmann and Alongkote Singhato
Foods 2025, 14(15), 2700; https://doi.org/10.3390/foods14152700 - 31 Jul 2025
Viewed by 444
Abstract
Selenium (Se) is an important trace element in our body; however, food composition data remain limited due to analytical challenges and interferences. Seafood, abundant in Thailand, is recognized as a rich source of Se. This study aimed to expand knowledge on Se content [...] Read more.
Selenium (Se) is an important trace element in our body; however, food composition data remain limited due to analytical challenges and interferences. Seafood, abundant in Thailand, is recognized as a rich source of Se. This study aimed to expand knowledge on Se content in seafood prepared using traditional Thai cooking methods. Twenty seafood species were selected and prepared by boiling, frying, and grilling. Inductively Coupled Plasma–Triple Quadrupole–Mass Spectrometry (ICP-MS/MS) was used to analyze total Se contents in selected seafood species. Results revealed significant variation in Se content across species and cooking methods. The Indo-Pacific horseshoe crab showed the highest Se concentration, with fried samples reaching 193.9 μg/100 g. Se concentrations were in the range of 8.6–155.5 μg/100 g (fresh), 14.3–106.6 μg/100 g (boiled), 17.3–193.9 μg/100 g (fried), and 7.3–160.1 μg/100 g (grilled). Results found significant effects of species and cooking method on Se content (p < 0.05). Fried seafood exhibited the highest estimated marginal mean Se concentration (a 78.8 μg/100 g edible portion), significantly higher than other methods. True retention (%TR) of Se ranged from 40.4% to 100%, depending on species and method. Bigfin reef squid, wedge shell, and silver pomfret showed the highest %TR (100%), while splendid squid exhibited the lowest (52.5%). Significant interaction effects on %TR were also observed (p < 0.05). Fried seafood had the highest mean %TR (88.8%), followed by grilled (82.1%) and boiled (79.7%). These findings highlight the effects of both species and cooking method on Se retention, emphasizing the nutritional value of selected seafood in preserving bioavailable Se after cooking. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

22 pages, 5896 KB  
Article
Point Cloud Generation Method Based on Dual-Prism Scanning with Multi-Parameter Optimization
by Yuanfeng Zhao, Zhen Zheng and Hong Chen
Photonics 2025, 12(8), 764; https://doi.org/10.3390/photonics12080764 - 29 Jul 2025
Viewed by 423
Abstract
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point [...] Read more.
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point cloud generation using dual-prism scanning. By establishing a beam pointing mathematical model, we systematically analyze how prism wedge angles, refractive indices, rotation speed ratios, and placement configurations influence scanning performance, revealing their coupled effects on deflection angles, azimuth control, and coverage. The non-paraxial ray tracing method combined with the Möller–Trumbore algorithm enables efficient point cloud simulation. Experimental results demonstrate that our optimized parameters significantly enhance point cloud density, uniformity, and target feature integrity while overcoming limitations of traditional database construction methods. This work provides both theoretical foundations and practical solutions for high-precision 3D reconstruction in high-speed rendezvous scenarios such as missile-borne laser fuzes, offering advantages in cost-effectiveness and operational reliability. Full article
Show Figures

Figure 1

36 pages, 11747 KB  
Article
Numerical Study on Interaction Between the Water-Exiting Vehicle and Ice Based on FEM-SPH-SALE Coupling Algorithm
by Zhenting Diao, Dengjian Fang and Jingwen Cao
Appl. Sci. 2025, 15(15), 8318; https://doi.org/10.3390/app15158318 - 26 Jul 2025
Viewed by 266
Abstract
The icebreaking process of water-exiting vehicles involves complex nonlinear interactions as well as multi-physical field coupling effects among ice, solids, and fluids, which poses enormous challenges for numerical calculations. Addressing the low solution accuracy of traditional grid methods in simulating large deformation and [...] Read more.
The icebreaking process of water-exiting vehicles involves complex nonlinear interactions as well as multi-physical field coupling effects among ice, solids, and fluids, which poses enormous challenges for numerical calculations. Addressing the low solution accuracy of traditional grid methods in simulating large deformation and destruction of ice layers, a numerical model was established based on the FEM-SPH-SALE coupling algorithm to study the dynamic characteristics of the water-exiting vehicle on the icebreaking process. The FEM-SPH adaptive algorithm was used to simulate the damage performance of ice, and its feasibility was verified through the four-point bending test and vehicle breaking ice experiment. The S-ALE algorithm was used to simulate the process of fluid/structure interaction, and its accuracy was verified through the wedge-body water-entry test and simulation. On this basis, numerical simulations were performed for different ice thicknesses and initial velocities of vehicles. The results show that the motion characteristics of the vehicle undergoes a sudden change during the ice-breaking. The head and middle section of the vehicle are subject to greater stress, which is related to the transmission of stress waves and inertial effect. The velocity loss rate of the vehicle and the maximum stress increase with the thickness of ice. The higher the initial velocity of the vehicle, the larger the acceleration and maximum stress in the process of the vehicle breaking ice. The acceleration peak is sensitive to the variation in the vehicle’s initial velocity but insensitive to the thickness of the ice. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

31 pages, 14609 KB  
Article
Reservoir Properties and Gas Potential of the Carboniferous Deep Coal Seam in the Yulin Area of Ordos Basin, North China
by Xianglong Fang, Feng Qiu, Longyong Shu, Zhonggang Huo, Zhentao Li and Yidong Cai
Energies 2025, 18(15), 3987; https://doi.org/10.3390/en18153987 - 25 Jul 2025
Viewed by 368
Abstract
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal [...] Read more.
In comparison to shallow coal seams, deep coal seams exhibit characteristics of high temperature, pressure, and in-situ stress, leading to significant differences in reservoir properties that constrain the effective development of deep coalbed methane (CBM). This study takes the Carboniferous deep 8# coal seam in the Yulin area of Ordos basin as the research subject. Based on the test results from core drilling wells, a comprehensive analysis of the characteristics and variation patterns of coal reservoir properties and a comparative analysis of the exploration and development potential of deep CBM are conducted, aiming to provide guidance for the development of deep CBM in the Ordos basin. The research results indicate that the coal seams are primarily composed of primary structure coal, with semi-bright to bright being the dominant macroscopic coal types. The maximum vitrinite reflectance (Ro,max) ranges between 1.99% and 2.24%, the organic is type III, and the high Vitrinite content provides a substantial material basis for the generation of CBM. Longitudinally, influenced by sedimentary environment and plant types, the lower part of the coal seam exhibits higher Vitrinite content and fixed carbon (FCad). The pore morphology is mainly characterized by wedge-shaped/parallel plate-shaped pores and open ventilation pores, with good connectivity, which is favorable for the storage and output of CBM. Micropores (<2 nm) have the highest volume proportion, showing an increasing trend with burial depth, and due to interlayer sliding and capillary condensation, the pore size (<2 nm) distribution follows an N shape. The full-scale pore heterogeneity (fractal dimension) gradually increases with increasing buried depth. Macroscopic fractures are mostly found in bright coal bands, while microscopic fractures are more developed in Vitrinite, showing a positive correlation between fracture density and Vitrinite content. The porosity and permeability conditions of reservoirs are comparable to the Daning–Jixian block, mostly constituting oversaturated gas reservoirs with a critical depth of 2400–2600 m and a high proportion of free gas, exhibiting promising development prospects, and the middle and upper coal seams are favorable intervals. In terms of resource conditions, preservation conditions, and reservoir alterability, the development potential of CBM from the Carboniferous deep 8# coal seam is comparable to the Linxing block but inferior to the Daning–Jixian block and Baijiahai uplift. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

19 pages, 5629 KB  
Article
Achieving Net-Zero in Canada: Sectoral GHG Reductions Through Provincial Clustering and the Carbon Mitigation Initiative’s Stabilization Wedges Concept
by Alaba Boluwade
Sustainability 2025, 17(15), 6665; https://doi.org/10.3390/su17156665 - 22 Jul 2025
Viewed by 518
Abstract
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic [...] Read more.
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic sectors. A time series analysis was performed to understand the trajectory of the emissions profile from 1990 to 2023. Using the 2023 emissions as the baseline, a linear reduction, based on the GHG proportions from each jurisdiction, was performed and projected to 2050 (except for Prince Edward Island (PEI), where net zero was targeted for 2040). Moreover, a machine learning technique (k-means unsupervised algorithm) was used to group all the jurisdictions into homogeneous regions for national strategic climate policy initiatives. The within-cluster sum of squares identified the following clusters: Cluster 1: Manitoba (MB), New Brunswick, Nova Scotia, and Newfoundland and Labrador; Cluster 2: Alberta (AB); Cluster 3: Quebec (QC) and Saskatchewan; Cluster 4: Ontario (ON); and Cluster 5: PEI, Northwest Territories, Nunavut, and Northwest Territories. Considering the maximum GHG reductions needed per cluster (Clusters 1–5), the results show that 0.309 Mt CO2 eq/year, 5.447 Mt CO2 eq/year, 1.293 Mt CO2 eq/year, 2.217 Mt CO2 eq/year, and 0.04 Mt CO2 eq/year must be targeted from MB (transportation), AB (stationary combustion), QC (transportation), ON (stationary combustion) and PEI (transportation), respectively. The concept of climate stabilization wedges, which provides a practical framework for addressing the monumental challenge of mitigating climate change, was introduced to each derived region to cut GHG emissions in Canada through tangible, measurable actions that is specific to each sector/cluster. The clustering-based method breaks climate mitigation problems down into manageable pieces by grouping the jurisdictions into efficient regions that can be managed effectively by fostering collaboration across jurisdictions and economic sectors. Actionable and strategic recommendations were made within each province to reach the goal of net-zero. The implications of this study for policy and climate action include the fact that actionable strategies and tailored policies are applied to each cluster’s emission profile and economic sector, ensuring equitable and effective climate mitigation strategies in Canada. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

17 pages, 341 KB  
Article
Study of Force Changes Based on Orthotic Elements Under the First Ray
by Marina Ballesteros-Mora, Pedro V. Munuera-Martínez, Natalia Tovaruela-Carrión, Antonia Sáez-Díaz and Javier Ramos-Ortega
Appl. Sci. 2025, 15(14), 7708; https://doi.org/10.3390/app15147708 - 9 Jul 2025
Viewed by 414
Abstract
The first ray plays a fundamental role in foot biomechanics, particularly in stabilizing the medial longitudinal arch and enabling efficient weight transfer during the mid-stance and propulsion phases of gait. When dorsiflexed—a condition known as metatarsus primus elevatus—especially in its flexible form, this [...] Read more.
The first ray plays a fundamental role in foot biomechanics, particularly in stabilizing the medial longitudinal arch and enabling efficient weight transfer during the mid-stance and propulsion phases of gait. When dorsiflexed—a condition known as metatarsus primus elevatus—especially in its flexible form, this structure disrupts load distribution, impairs propulsion, and contributes to various clinical symptoms. Despite its clinical importance, the biomechanical impact of orthotic elements placed beneath the first ray remains underexplored. This study aimed to quantify the variations in medio-lateral (Fx), antero-posterior (Fy), and vertical (Fz) force vectors generated during gait in response to different orthotic elements positioned under the first ray. A quasi-experimental, post-test design was conducted involving 22 participants (10 men and 12 women) diagnosed with flexible metatarsus primus elevatus. Each participant was evaluated using custom-made insoles incorporating various orthotic elements, while gait data were collected using a dynamometric platform during the mid-stance and propulsion phases. Significant gait-phase-dependent force alterations were observed. A cut-out (E) reduced medio-lateral forces during propulsion (p < 0.05), while a kinetic wedge (F) was correlated with late-stance stability (r = −0.526). The foot posture index (FPI)/body mass index (BMI) mediated the vertical forces. The effect sizes reached 0.45–0.42 for antero-posterior force modulation. Phase-targeted orthoses (a cut-out for propulsion, a kinetic wedge for late stance) and patient factors (FPI/BMI) appear to promote biomechanical efficacy in metatarsus primus elevatus, enabling personalized therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Foot Biomechanics and Gait Analysis, 2nd Edition)
Show Figures

Figure 1

19 pages, 1788 KB  
Article
Impact of Whole-Fruit Storage Conditions on the Quality of Minimally Processed Pears
by Vanessa Cuozzo, Eva Torres, Yanina Pariani and Ana Cecilia Silveira
Plants 2025, 14(14), 2108; https://doi.org/10.3390/plants14142108 - 9 Jul 2025
Viewed by 525
Abstract
The shelf life of minimally processed fresh (MPF) pears is affected by raw material characteristics and production factors. This study evaluated the effect of raw material storage (3 months in regular atmosphere [RA], 3 and 6 months in controlled atmosphere [CA]) on the [...] Read more.
The shelf life of minimally processed fresh (MPF) pears is affected by raw material characteristics and production factors. This study evaluated the effect of raw material storage (3 months in regular atmosphere [RA], 3 and 6 months in controlled atmosphere [CA]) on the organoleptic and functional quality of MPF pears packaged in polypropylene (PP) and low-density polyethylene (LDPE) for 0, 10, and 15 days at 0 °C. Wedges from 3-month CA showed the lowest respiratory activity (about 8.31 mg CO2 kg−1 h−1), and those from 6-mounth CA maintained higher firmness after 15 days. Lightness decreased during storage, less so in harvest samples, which also showed less browning. Nevertheless, polyphenol oxidase (PPO) activity increased fivefold after 15 days. Total polyphenol content decreased by about 50% during storage. Wedges in PP packaging exhibited higher total antioxidant capacity (TAC) measured by DPPH than those in LDPE (15.55 and 13.77 mg EAA 100 g−1 FW, respectively). In both, the contents were reduced after 15 days (15–38%). No differences in TAC were observed in the FRAP assay, where values remained unchanged. Significant correlations between PPO activity, TAC, and color variables suggest ongoing oxidative processes. In contrast to the effect of raw material storage, the type of packaging did not significantly affect any of the measured variables. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

Back to TopTop