Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (291)

Search Parameters:
Keywords = weighted K-nearest neighbor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1341 KB  
Proceeding Paper
Predicting Nurse Stress Levels Using Time-Series Sensor Data and Comparative Evaluation of Classification Algorithms
by Ayşe Çiçek Korkmaz, Adem Korkmaz and Selahattin Koşunalp
Eng. Proc. 2025, 104(1), 30; https://doi.org/10.3390/engproc2025104030 - 22 Aug 2025
Viewed by 188
Abstract
This study proposes a machine learning-based framework for classifying occupational stress levels among nurses using physiological time-series data collected from wearable sensors. The dataset comprises multimodal signals including electrodermal activity (EDA), heart rate (HR), skin temperature (TEMP), and tri-axial accelerometer measurements (X, Y, [...] Read more.
This study proposes a machine learning-based framework for classifying occupational stress levels among nurses using physiological time-series data collected from wearable sensors. The dataset comprises multimodal signals including electrodermal activity (EDA), heart rate (HR), skin temperature (TEMP), and tri-axial accelerometer measurements (X, Y, Z), which are labeled into three categorical stress levels: low (0), medium (1), and high (2). To enhance the usability of the raw data, a resampling process was performed to aggregate the measurements into one-minute intervals, followed by the application of the Synthetic Minority Over-sampling Technique (SMOTE) to mitigate severe class imbalance. Subsequently, a comparative classification analysis was conducted using four supervised learning algorithms: Random Forest, XGBoost, k-Nearest Neighbors (k-NN), and LightGBM. Model performances were evaluated based on accuracy, weighted F1-score, and confusion matrices to ensure robustness across imbalanced class distributions. Additionally, temporal pattern analyses by the day of the week and the hour of the day revealed significant trends in stress variation, underscoring the influence of circadian and organizational factors. Among the models tested, ensemble-based methods, particularly Random Forest and XGBoost with optimized hyperparameters, demonstrated a superior predictive performance. These findings highlight the feasibility of integrating real-time, sensor-driven stress monitoring systems into healthcare environments to support proactive workforce management and improve care quality. Full article
Show Figures

Figure 1

29 pages, 16357 KB  
Article
Evaluation of Heterogeneous Ensemble Learning Algorithms for Lithological Mapping Using EnMAP Hyperspectral Data: Implications for Mineral Exploration in Mountainous Region
by Soufiane Hajaj, Abderrazak El Harti, Amin Beiranvand Pour, Younes Khandouch, Abdelhafid El Alaoui El Fels, Ahmed Babeker Elhag, Nejib Ghazouani, Mustafa Ustuner and Ahmed Laamrani
Minerals 2025, 15(8), 833; https://doi.org/10.3390/min15080833 - 5 Aug 2025
Viewed by 624
Abstract
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of [...] Read more.
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of ensemble learning (EL) algorithms for lithological classification and mineral exploration using EnMAP hyperspectral imagery (HSI) in a semi-arid region. The Moroccan Anti-Atlas mountainous region is known for its complex geology, high mineral potential and rugged terrain, making it a challenging for mineral exploration. This research applies core and heterogeneous ensemble learning methods, i.e., boosting, stacking, voting, bagging, blending, and weighting to improve the accuracy and robustness of lithological classification and mapping in the Moroccan Anti-Atlas mountainous region. Several state-of-the-art models, including support vector machines (SVMs), random forests (RFs), k-nearest neighbors (k-NNs), multi-layer perceptrons (MLPs), extra trees (ETs) and extreme gradient boosting (XGBoost), were evaluated and used as individual and ensemble classifiers. The results show that the EL methods clearly outperform (single) base classifiers. The potential of EL methods to improve the accuracy of HSI-based classification is emphasized by an optimal blending model that achieves the highest overall accuracy (96.69%). The heterogeneous EL models exhibit better generalization ability than the baseline (single) ML models in lithological classification. The current study contributes to a more reliable assessment of resources in mountainous and semi-arid regions by providing accurate delineation of lithological units for mineral exploration objectives. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Exploration Methods and Applications 2025)
Show Figures

Figure 1

28 pages, 10147 KB  
Article
Construction of Analogy Indicator System and Machine-Learning-Based Optimization of Analogy Methods for Oilfield Development Projects
by Muzhen Zhang, Zhanxiang Lei, Chengyun Yan, Baoquan Zeng, Fei Huang, Tailai Qu, Bin Wang and Li Fu
Energies 2025, 18(15), 4076; https://doi.org/10.3390/en18154076 - 1 Aug 2025
Viewed by 364
Abstract
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests [...] Read more.
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests multiple machine-learning algorithms on two analogy tasks to identify the optimal method. Using an initial set of basic indicators and a database of 1436 oilfield samples, a combined subjective–objective weighting strategy that integrates statistical methods with expert judgment is used to select, classify, and assign weights to the indicators. This process results in 26 key indicators for practical analogy analysis. Single-indicator and whole-asset analogy experiments are then performed with five standard machine-learning algorithms—support vector machine (SVM), random forest (RF), backpropagation neural network (BP), k-nearest neighbor (KNN), and decision tree (DT). Results show that SVM achieves classification accuracies of 86% and 95% in medium-high permeability sandstone oilfields, respectively, greatly surpassing other methods. These results demonstrate the effectiveness of the proposed indicator system and methodology, providing efficient and objective technical support for evaluating and making decisions on overseas oilfield development projects. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

25 pages, 6467 KB  
Article
Integrating Sensor Data, Laboratory Analysis, and Computer Vision in Machine Learning-Driven E-Nose Systems for Predicting Tomato Shelf Life
by Julia Marie Senge, Florian Kaltenecker and Christian Krupitzer
Chemosensors 2025, 13(7), 255; https://doi.org/10.3390/chemosensors13070255 - 12 Jul 2025
Viewed by 588
Abstract
Assessing the quality of fresh produce is essential to ensure a safe and satisfactory product. Methods to monitor the quality of fresh produce exist; however, they are often expensive, time-consuming, and sometimes require the destruction of the sample. Electronic Nose (E-Nose) technology has [...] Read more.
Assessing the quality of fresh produce is essential to ensure a safe and satisfactory product. Methods to monitor the quality of fresh produce exist; however, they are often expensive, time-consuming, and sometimes require the destruction of the sample. Electronic Nose (E-Nose) technology has been established to track the ripeness, spoilage, and quality of fresh produce. Our study developed a freshness monitoring system for tomatoes, combining E-Nose technology with storage condition monitoring, color analysis, and weight-loss tracking. Different post-purchase scenarios were investigated, focusing on the influence of temperature and mechanical damage on shelf life. Support Vector Classifier (SVC) and k-Nearest Neighbor (kNN) were applied to classify storage scenarios and storage days, while Support Vector Regression (SVR) and kNN regression were used for predicting storage days. By using a data fusion approach with Linear Discriminant Analysis (LDA), the SVC achieved an accuracy of 72.91% in predicting storage days and an accuracy of 86.73% in distinguishing between storage scenarios. The kNN yielded the best regression results, with a Mean Absolute Error (MAE) of 0.841 days and a coefficient of determination of 0.867. The results highlight the method’s potential to predict storage scenarios and storage days, providing insight into the product’s remaining shelf life. Full article
Show Figures

Figure 1

20 pages, 10558 KB  
Article
Spatial–Spectral Feature Fusion and Spectral Reconstruction of Multispectral LiDAR Point Clouds by Attention Mechanism
by Guoqing Zhou, Haoxin Qi, Shuo Shi, Sifu Bi, Xingtao Tang and Wei Gong
Remote Sens. 2025, 17(14), 2411; https://doi.org/10.3390/rs17142411 - 12 Jul 2025
Viewed by 527
Abstract
High-quality multispectral LiDAR (MSL) data are crucial for land cover (LC) classification. However, the Titan MSL system encounters challenges of inconsistent spatial–spectral information due to its unique scanning and data saving method, restricting subsequent classification accuracy. Existing spectral reconstruction methods often require empirical [...] Read more.
High-quality multispectral LiDAR (MSL) data are crucial for land cover (LC) classification. However, the Titan MSL system encounters challenges of inconsistent spatial–spectral information due to its unique scanning and data saving method, restricting subsequent classification accuracy. Existing spectral reconstruction methods often require empirical parameter settings and involve high computational costs, limiting automation and complicating application. To address this problem, we introduce the dual attention spectral optimization reconstruction network (DossaNet), leveraging an attention mechanism and spatial–spectral information. DossaNet can adaptively adjust weight parameters, streamline the multispectral point cloud acquisition process, and integrate it into classification models end-to-end. The experimental results show the following: (1) DossaNet exhibits excellent generalizability, effectively recovering accurate LC spectra and improving classification accuracy. Metrics across the six classification models show some improvements. (2) Compared with the method lacking spectral reconstruction, DossaNet can improve the overall accuracy (OA) and average accuracy (AA) of PointNet++ and RandLA-Net by a maximum of 4.8%, 4.47%, 5.93%, and 2.32%. Compared with the inverse distance weighted (IDW) and k-nearest neighbor (KNN) approach, DossaNet can improve the OA and AA of PointNet++ and DGCNN by a maximum of 1.33%, 2.32%, 0.86%, and 2.08% (IDW) and 1.73%, 3.58%, 0.28%, and 2.93% (KNN). The findings further validate the effectiveness of our proposed method. This method provides a more efficient and simplified approach to enhancing the quality of multispectral point cloud data. Full article
Show Figures

Figure 1

20 pages, 2010 KB  
Article
Machine Learning Analysis of Maize Seedling Traits Under Drought Stress
by Lei Zhang, Fulai Zhang, Wentao Du, Mengting Hu, Ying Hao, Shuqi Ding, Huijuan Tian and Dan Zhang
Biology 2025, 14(7), 787; https://doi.org/10.3390/biology14070787 - 29 Jun 2025
Viewed by 527
Abstract
The increasing concentration of greenhouse gases is amplifying the global risk of drought on crop productivity. This study sought to investigate the effects of drought on the growth of maize (Zea mays L.) seedlings. A total of 78 maize hybrids were employed [...] Read more.
The increasing concentration of greenhouse gases is amplifying the global risk of drought on crop productivity. This study sought to investigate the effects of drought on the growth of maize (Zea mays L.) seedlings. A total of 78 maize hybrids were employed in this study to replicate drought conditions through the potting method. The maize seedlings were subjected to a 10-day period of water breakage following a standard watering cycle until they reached the third leaf collar (V3) stage. Parameters including plant height, stem diameter, chlorophyll content, and root number were assessed. The eight phenotypic traits include the fresh and dry weights of both the aboveground and underground parts. Three machine learning methods—random forest (RF), K-nearest neighbor (KNN), and extreme gradient boosting (XGBoost)—were employed to systematically analyze the relevant traits of maize seedlings’ drought tolerance and to assess their predictive performance in this regard. The findings indicated that plant height, aboveground weight, and chlorophyll content constituted the primary indices for phenotyping maize seedlings under drought conditions. The XGBoost model demonstrated optimal performance in the classification (AUC = 0.993) and regression (R2 = 0.863) tasks, establishing itself as the most effective prediction model. This study provides a foundation for the feasibility and reliability of screening drought-tolerant maize varieties and refining precision breeding strategies. Full article
(This article belongs to the Special Issue Plant Breeding: From Biology to Biotechnology)
Show Figures

Graphical abstract

22 pages, 1611 KB  
Article
Body Composition and Metabolic Profiles in Young Adults: A Cross-Sectional Comparison of People Who Use E-Cigarettes, People Who Smoke Cigarettes, and People Who Have Never Used Nicotine Products
by Joanna Chwał, Hanna Zadoń, Piotr Szaflik, Radosław Dzik, Anna Filipowska, Rafał Doniec, Paweł Kostka and Robert Michnik
J. Clin. Med. 2025, 14(13), 4459; https://doi.org/10.3390/jcm14134459 - 23 Jun 2025
Viewed by 720
Abstract
Background: Recent research highlights uncertainties surrounding the metabolic effects of nicotine in young adults, particularly among people who use e-cigarettes. While traditional smoking is known to alter body composition, the metabolic impact of using e-cigarettes remains less understood. Methods: In this [...] Read more.
Background: Recent research highlights uncertainties surrounding the metabolic effects of nicotine in young adults, particularly among people who use e-cigarettes. While traditional smoking is known to alter body composition, the metabolic impact of using e-cigarettes remains less understood. Methods: In this cross-sectional study, body composition (via bioelectrical impedance analysis) and lifestyle data were collected from 60 university students (mean age: 21.7 ± 1.9 years), who were classified as people who use e-cigarettes exclusively, people who smoke cigarettes exclusively, or people who have never used nicotine products. To address confounding by sex and age, inverse probability of treatment weighting (IPTW) was applied. Results: After adjustment, people who use e-cigarettes had significantly higher body fat percentage compared to people who have never used nicotine (β = 5.45, p = 0.001), while no significant differences were found between people who smoke cigarettes and other groups. Energy drink consumption was also positively associated with body fat percentage and metabolic age. Machine learning models, particularly k-nearest neighbors, achieved moderate classification accuracy (up to 72%) in distinguishing people who use nicotine from people who have never used nicotine based on physiological and lifestyle features. Conclusions: It is important to note that the majority of participants were metabolically healthy, and the observed differences occurred within a clinically normal range. While these findings suggest associations between e-cigarette use and higher adiposity in young adults, no causal inferences can be made due to the observational design. Further longitudinal studies are needed to explore the potential metabolic implications of nicotine use. Full article
(This article belongs to the Special Issue Substance and Behavioral Addictions: Prevention and Diagnosis)
Show Figures

Figure 1

19 pages, 2565 KB  
Article
Rolling Bearing Fault Diagnosis via Temporal-Graph Convolutional Fusion
by Fan Li, Yunfeng Li and Dongfeng Wang
Sensors 2025, 25(13), 3894; https://doi.org/10.3390/s25133894 - 23 Jun 2025
Viewed by 617
Abstract
To address the challenge of incomplete fault feature extraction in rolling bearing fault diagnosis under small-sample conditions, this paper proposes a Temporal-Graph Convolutional Fusion Network (T-GCFN). The method enhances diagnostic robustness through collaborative extraction and dynamic fusion of features from time-domain and frequency-domain [...] Read more.
To address the challenge of incomplete fault feature extraction in rolling bearing fault diagnosis under small-sample conditions, this paper proposes a Temporal-Graph Convolutional Fusion Network (T-GCFN). The method enhances diagnostic robustness through collaborative extraction and dynamic fusion of features from time-domain and frequency-domain branches. First, Variational Mode Decomposition (VMD) was employed to extract time-domain Intrinsic Mode Functions (IMFs). These were then input into a Temporal Convolutional Network (TCN) to capture multi-scale temporal dependencies. Simultaneously, frequency-domain features obtained via Fast Fourier Transform (FFT) were used to construct a K-Nearest Neighbors (KNN) graph, which was processed by a Graph Convolutional Network (GCN) to identify spatial correlations. Subsequently, a channel attention fusion layer was designed. This layer utilized global max pooling and average pooling to compress spatio-temporal features. A shared Multi-Layer Perceptron (MLP) then established inter-channel dependencies to generate attention weights, enhancing critical features for more complete fault information extraction. Finally, a SoftMax classifier performed end-to-end fault recognition. Experiments demonstrated that the proposed method significantly improved fault recognition accuracy under small-sample scenarios. These results validate the strong adaptability of the T-GCFN mechanism. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 6801 KB  
Article
A Graph Isomorphic Network with Attention Mechanism for Intelligent Fault Diagnosis of Axial Piston Pump
by Kai Li, Bofan Wu, Shiqi Xia and Xianshi Jia
Appl. Sci. 2025, 15(12), 6586; https://doi.org/10.3390/app15126586 - 11 Jun 2025
Viewed by 389
Abstract
Axial piston pumps play a vital role in fluid power systems, which are widely employed in diverse fields such as aerospace, ocean engineering, and rail transit. It is essential to accurately diagnose faults in these pumps since their reliable operation hinges on it. [...] Read more.
Axial piston pumps play a vital role in fluid power systems, which are widely employed in diverse fields such as aerospace, ocean engineering, and rail transit. It is essential to accurately diagnose faults in these pumps since their reliable operation hinges on it. A graph isomorphic network with a spatio-temporal attention mechanism (GIN-ST) is proposed in this paper for fault diagnosis of hydraulic axial piston pumps; GIN-AM addresses the problem of traditional intelligent fault diagnosis methods being limited to nonlinear mapping and transformation in Euclidean space. Initially, the weighted graphs are constructed from a univariate time series through K-nearest neighbor graph methods. Subsequently, a spatio-temporal attention-based module used to learn the graph representation of piston pump faults is presented, where a novel READOUT function and Transformer encoder provide spatial and temporal interpretability, respectively. Finally, the proposed (GIN-ST) model is compared against other intelligent fault diagnosis methods, and the superiority of the proposed method is proven. Full article
Show Figures

Figure 1

25 pages, 36638 KB  
Article
Integrating Machine Learning and In Vitro Screening to Evaluate Drought and Temperature Stress Responses for Vicia Species
by Onur Okumuş, Özhan Şimşek, Musab A. Isak, Nilüfer Koçak Şahin, Adnan Aydin, Barış Eren, Fatih Demirel, Cansu Telci Kahramanoğulları, Satı Uzun and Mehmet Yaman
Processes 2025, 13(6), 1845; https://doi.org/10.3390/pr13061845 - 11 Jun 2025
Cited by 1 | Viewed by 844
Abstract
Drought and temperature extremes are major abiotic stressors limiting legume productivity worldwide. This study investigates the germination and early seedling responses of six cultivars belonging to three Vicia species (V. sativa, V. pannonica, and V. narbonensis) under varying levels [...] Read more.
Drought and temperature extremes are major abiotic stressors limiting legume productivity worldwide. This study investigates the germination and early seedling responses of six cultivars belonging to three Vicia species (V. sativa, V. pannonica, and V. narbonensis) under varying levels of polyethylene glycol (PEG)-induced drought and temperature conditions (12 °C, 18 °C, and 24 °C) in vitro. Significant cultivar-dependent differences were observed in the germination rate (GR), shoot and root length (SL and RL), fresh and dry weight (FW and DW), and vigor index (VI). The Ayaz cultivar exhibited superior performance, particularly under severe drought (10% PEG) and optimal temperature (24 °C), while Özgen and Balkan were most sensitive to stress. Principal component and correlation analyses revealed strong associations between the vigor index, shoot height, and fresh and dry weight, particularly in high-performing genotypes. To further model and predict stress responses, four machine learning (ML) algorithms—Random Forest (RF), k-Nearest Neighbors (k-NNs), Multilayer Perceptron (MLP), and Support Vector Machines (SVMs)—were employed. Based on model performance metrics, and considering high R2 values along with low RMSE and MAE values, the MLP model demonstrated the most accurate predictions for the GR (R2 = 0.95, RMSE = 0.06, MAE = 0.05) and VI (R2 = 0.99, RMSE = 0.02, MAE = 0.01) parameters. In contrast, the RF model yielded the best results for the SL (R2 = 0.98, RMSE = 0.02, MAE = 0.02) and DW (R2 = 0.93, RMSE = 0.06, MAE = 0.04) parameters, while the highest prediction accuracy for the RL (R2 = 0.83, RMSE = 0.09, MAE = 0.07) and FW (R2 = 0.97, RMSE = 0.05, MAE = 0.03) parameters was achieved using the SVM model. Comparative analysis with recent studies confirmed the applicability of ML in stress physiology and genotype screening. This integrative approach offers a robust framework for genotype selection and stress tolerance modeling in legumes, contributing to developing climate-resilient crops. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

43 pages, 9269 KB  
Article
A Machine Learning Approach for Predicting Particle Spatial, Velocity, and Temperature Distributions in Cold Spray Additive Manufacturing
by Lurui Wang, Mehdi Jadidi and Ali Dolatabadi
Appl. Sci. 2025, 15(12), 6418; https://doi.org/10.3390/app15126418 - 7 Jun 2025
Viewed by 613
Abstract
Masked cold spray additive manufacturing (CSAM) is investigated for fabricating nickel-based electrodes with pyramidal pin-fins that enlarge the active area for the hydrogen-evolution reaction (HER). To bypass the high cost of purely CFD-driven optimization, we construct a two-stage machine learning (ML) framework trained [...] Read more.
Masked cold spray additive manufacturing (CSAM) is investigated for fabricating nickel-based electrodes with pyramidal pin-fins that enlarge the active area for the hydrogen-evolution reaction (HER). To bypass the high cost of purely CFD-driven optimization, we construct a two-stage machine learning (ML) framework trained on 48 high-fidelity CFD simulations. Stage 1 applies sampling and a K-nearest-neighbor kernel-density-estimation algorithm that predicts the spatial distribution of impacting particles and re-allocates weights in regions of under-estimation. Stage 2 combines sampling, interpolation and symbolic regression to extract key features, then uses a weighted random forest model to forecast particle velocity and temperature upon impact. The ML predictions closely match CFD outputs while reducing computation time by orders of magnitude, demonstrating that ML-CFD integration can accelerate CSAM process design. Although developed for a masked setup, the framework generalizes readily to unmasked cold spray configurations. Full article
Show Figures

Figure 1

28 pages, 2698 KB  
Article
Comparative Analysis of Machine Learning Methods with Chaotic AdaBoost and Logistic Mapping for Real-Time Sensor Fusion in Autonomous Vehicles: Enhancing Speed and Acceleration Prediction Under Uncertainty
by Mehmet Bilban and Onur İnan
Sensors 2025, 25(11), 3485; https://doi.org/10.3390/s25113485 - 31 May 2025
Viewed by 745
Abstract
This study presents a novel artificial intelligence-driven architecture for real-time sensor fusion in autonomous vehicles (AVs), leveraging Apache Kafka and MongoDB for synchronous and asynchronous data processing to enhance resilience against sensor failures and dynamic conditions. We introduce Chaotic AdaBoost (CAB), an advanced [...] Read more.
This study presents a novel artificial intelligence-driven architecture for real-time sensor fusion in autonomous vehicles (AVs), leveraging Apache Kafka and MongoDB for synchronous and asynchronous data processing to enhance resilience against sensor failures and dynamic conditions. We introduce Chaotic AdaBoost (CAB), an advanced variant of AdaBoost that integrates a logistic chaotic map into its weight update process, overcoming the limitations of deterministic ensemble methods. CAB is evaluated alongside k-Nearest Neighbors (kNNs), Artificial Neural Networks (ANNs), standard AdaBoost (AB), Gradient Boosting (GBa), and Random Forest (RF) for speed and acceleration prediction using CARLA simulator data. CAB achieves a superior 99.3% accuracy (MSE: 0.018 for acceleration, 0.010 for speed; MAE: 0.020 for acceleration, 0.012 for speed; R2: 0.993 for acceleration, 0.997 for speed), a mean Time-To-Collision (TTC) of 3.2 s, and jerk of 0.15 m/s3, outperforming AB (98.5%, MSE: 0.15, TTC: 2.8 s, jerk: 0.22 m/s3), GB (99.1%), ANN (98.2%), RF (97.5%), and kNN (87.0%). This logistic map-enhanced adaptability, reducing MSE by 88% over AB, ensures robust anomaly detection and data fusion under uncertainty, critical for AV safety and comfort. Despite a 20% increase in training time (72 s vs. 60 s for AB), CAB’s integration with Kafka’s high-throughput streaming maintains real-time efficacy, offering a scalable framework that advances operational reliability and passenger experience in autonomous driving. Full article
Show Figures

Figure 1

37 pages, 9314 KB  
Article
A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers
by Sung Won Kim and Young Il Kim
Energies 2025, 18(11), 2779; https://doi.org/10.3390/en18112779 - 27 May 2025
Viewed by 450
Abstract
In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data [...] Read more.
In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data is present, the reliability of data analysis decreases, leading to potential distortions in the results. To address this issue, it is necessary to either minimize missing occurrences by utilizing high-precision measurement equipment or apply reliable imputation techniques to compensate for missing values. This study focuses on two water-cooled turbo chillers installed in Tower A, Seoul, collecting a total of 118,464 data points over 3 years and 4 months. The dataset includes chilled water inlet and outlet temperatures (T1 and T2) and flow rate (V˙1) and cooling water inlet and outlet temperatures (T3 and T4) and flow rate (V˙3), as well as chiller power consumption (W˙c). To evaluate the performance of various imputation techniques, we introduced missing values at a rate of 10–30% under the assumption of a missing-at-random (MAR) mechanism. Seven different imputation methods—mean, median, linear interpolation, multiple imputation, simple random imputation, k-nearest neighbors (KNN), and the dynamically clustered KNN (DC-KNN)—were applied, and their imputation performance was validated using MAPE and CVRMSE metrics. The DC-KNN method, developed in this study, improves upon conventional KNN imputation by integrating clustering and dynamic weighting mechanisms. The results indicate that DC-KNN achieved the highest predictive performance, with MAPE ranging from 9.74% to 10.30% and CVRMSE ranging from 12.19% to 13.43%. Finally, for the missing data recorded in July 2023, we applied the most effective DC-KNN method to generate imputed values that reflect the characteristics of the studied site, which employs an ice thermal energy storage system. Full article
Show Figures

Figure 1

28 pages, 3777 KB  
Article
Multisensor Fault Diagnosis of Rolling Bearing with Noisy Unbalanced Data via Intuitionistic Fuzzy Weighted Least Squares Twin Support Higher-Order Tensor Machine
by Shengli Dong, Yifang Zhang and Shengzheng Wang
Machines 2025, 13(6), 445; https://doi.org/10.3390/machines13060445 - 22 May 2025
Cited by 1 | Viewed by 516
Abstract
Aiming at the limitations of existing multisensor fault diagnosis methods for rolling bearings in real industrial scenarios, this paper proposes an innovative intuitionistic fuzzy weighted least squares twin support higher-order tensor machine (IFW-LSTSHTM) model, which realizes a breakthrough in the noise robustness, adaptability [...] Read more.
Aiming at the limitations of existing multisensor fault diagnosis methods for rolling bearings in real industrial scenarios, this paper proposes an innovative intuitionistic fuzzy weighted least squares twin support higher-order tensor machine (IFW-LSTSHTM) model, which realizes a breakthrough in the noise robustness, adaptability to the working conditions, and the class imbalance processing capability. First, the multimodal feature tensor is constructed: the fourier synchro-squeezed transform is used to convert the multisensor time-domain signals into time–frequency images, and then the tensor is reconstructed to retain the three-dimensional structural information of the sensor coupling relationship and time–frequency features. The nonlinear feature mapping strategy combined with Tucker decomposition effectively maintains the high-order correlation of the feature tensor. Second, the adaptive sample-weighting mechanism is developed: an intuitionistic fuzzy membership score assignment scheme with global–local information fusion is proposed. At the global level, the class contribution is assessed based on the relative position of the samples to the classification boundary; at the local level, the topological structural features of the sample distribution are captured by K-nearest neighbor analysis; this mechanism significantly improves the recognition of noisy samples and the handling of class-imbalanced data. Finally, a dual hyperplane classifier is constructed in tensor space: a structural risk regularization term is introduced to enhance the model generalization ability and a dynamic penalty factor is set to set adaptive weights for different categories. A linear equation system solving strategy is adopted: the nonparallel hyperplane optimization is converted into matrix operations to improve the computational efficiency. The extensive experimental results on the two rolling bearing datasets have verified that the proposed method outperforms existing solutions in diagnostic accuracy and stability. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

23 pages, 9051 KB  
Article
Predicting User Attention States from Multimodal Eye–Hand Data in VR Selection Tasks
by Xiaoxi Du, Jinchun Wu, Xinyi Tang, Xiaolei Lv, Lesong Jia and Chengqi Xue
Electronics 2025, 14(10), 2052; https://doi.org/10.3390/electronics14102052 - 19 May 2025
Viewed by 1007
Abstract
Virtual reality (VR) devices that integrate eye-tracking and hand-tracking technologies can capture users’ natural eye–hand data in real time within a three-dimensional virtual space, providing new opportunities to explore users’ attentional states during natural 3D interactions. This study aims to develop an attention-state [...] Read more.
Virtual reality (VR) devices that integrate eye-tracking and hand-tracking technologies can capture users’ natural eye–hand data in real time within a three-dimensional virtual space, providing new opportunities to explore users’ attentional states during natural 3D interactions. This study aims to develop an attention-state prediction model based on the multimodal fusion of eye and hand features, which distinguishes whether users primarily employ goal-directed attention or stimulus-driven attention during the execution of their intentions. In our experiment, we collected three types of data—eye movements, hand movements, and pupil changes—and instructed participants to complete a virtual button selection task. This setup allowed us to establish a binary ground truth label for attentional state during the execution of selection intentions for model training. To investigate the impact of different time windows on prediction performance, we designed eight time windows ranging from 0 to 4.0 s (in increments of 0.5 s) and compared the performance of eleven algorithms, including logistic regression, support vector machine, naïve Bayes, k-nearest neighbors, decision tree, linear discriminant analysis, random forest, AdaBoost, gradient boosting, XGBoost, and neural networks. The results indicate that, within the 3 s window, the gradient boosting model performed best, achieving a weighted F1-score of 0.8835 and an Accuracy of 0.8860. Furthermore, the analysis of feature importance demonstrated that the multimodal eye–hand features play a critical role in the prediction. Overall, this study introduces an innovative approach that integrates three types of multimodal eye–hand behavioral and physiological data within a virtual reality interaction context. This framework provides both theoretical and methodological support for predicting users’ attentional states within short time windows and contributes practical guidance for the design of attention-adaptive 3D interfaces. In addition, the proposed multimodal eye–hand data fusion framework also demonstrates potential applicability in other three-dimensional interaction domains, such as game experience optimization, rehabilitation training, and driver attention monitoring. Full article
Show Figures

Figure 1

Back to TopTop