Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (645)

Search Parameters:
Keywords = wheeled robot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1735 KB  
Article
A Multi-Sensor Fusion-Based Localization Method for a Magnetic Adhesion Wall-Climbing Robot
by Xiaowei Han, Hao Li, Nanmu Hui, Jiaying Zhang and Gaofeng Yue
Sensors 2025, 25(16), 5051; https://doi.org/10.3390/s25165051 - 14 Aug 2025
Viewed by 368
Abstract
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), [...] Read more.
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), Wheel Odometry (Odom), and Ultra-Wideband (UWB). An Extended Kalman Filter (EKF) is employed to integrate IMU and Odom measurements through a complementary filtering model, while a geometric residual-based weighting mechanism is introduced to optimize raw UWB ranging data. This enhances the accuracy and robustness of both the prediction and observation stages. All evaluations were conducted in a simulated environment, including scenarios on flat plates and spherical tank-shaped steel surfaces. The proposed method maintained a maximum localization error within 5 cm in both linear and closed-loop trajectories and achieved over 30% improvement in horizontal accuracy compared to baseline EKF-based approaches. The system exhibited consistent localization performance across varying surface geometries, providing technical support for robotic operations on large steel infrastructures. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

21 pages, 5062 KB  
Article
Experimental Evaluation of Rolling Resistance in Omnidirectional Wheels Under Quasi-Static Conditions
by Sławomir Duda, Grzegorz Gembalczyk, Tomasz Machoczek and Zygmunt Kowalik
Sensors 2025, 25(16), 5026; https://doi.org/10.3390/s25165026 - 13 Aug 2025
Viewed by 304
Abstract
This paper presents the results of experimental research on rolling resistance forces occurring during the motion of omnidirectional wheels equipped with dual rows of passive rollers. Due to the complexity of wheel–surface interactions and the stochastic nature of contact transitions, such wheels are [...] Read more.
This paper presents the results of experimental research on rolling resistance forces occurring during the motion of omnidirectional wheels equipped with dual rows of passive rollers. Due to the complexity of wheel–surface interactions and the stochastic nature of contact transitions, such wheels are often characterized experimentally rather than analytically. A custom-built test stand was used to measure resistance forces for different wheel orientations (0°, 30°, 45°, 60°, and 90°) and two vertical loads (117.7 N and 215.8 N) on two surface types: industrial concrete and anodized aluminum. The results demonstrated a strong influence of wheel orientation on resistance, with the highest mean force recorded at 60° for both loads. The results revealed an oscillatory pattern in the resistance force, strongly influenced by the angular position of the wheel. For concrete, mean forces ranged from 1.04 N to 10.34 N, while for aluminum, they ranged from 1.08 N to 10.11 N. Significant oscillations and occasional negative force values were observed, attributed to roller geometry and wheel irregularities. The data obtained are useful for validating numerical models and improving the design and control of mobile robots using omnidirectional wheels. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

23 pages, 14367 KB  
Article
Design and Experimental Validation of a Multimodal Snake Robot with Elliptical Wheels
by Xuan Xiao, Zizhu Zhao, Lianzhi Qi, Michael Albert Sumantri, Hengwei Liu, Jianqin Li, Keyang Zheng and Jianming Wang
Biomimetics 2025, 10(8), 532; https://doi.org/10.3390/biomimetics10080532 - 13 Aug 2025
Viewed by 347
Abstract
Snake robots are characterized by their flexibility and environmental adaptability, achieved through various optimized gaits. However, their forward propulsion still requires improvement. This challenge can be addressed by integrating wheels or legs, but these mechanisms often limit the ability of snake robots to [...] Read more.
Snake robots are characterized by their flexibility and environmental adaptability, achieved through various optimized gaits. However, their forward propulsion still requires improvement. This challenge can be addressed by integrating wheels or legs, but these mechanisms often limit the ability of snake robots to perform most optimized gaits. In this article, we develop a novel multimodal snake robot, JiAo-II, with both body-based locomotion and wheeled locomotion to handle complex terrains. The mechanical design and implementation of JiAo-II are presented in detail, with particular emphasis on its innovative elliptical wheels and gear transmission mechanism. Experimental results validate the effectiveness and multifunctionality of JiAo-II across various scenarios, including traversing grasslands, crossing gaps, ascending slopes, navigating pipelines, and climbing cylindrical surfaces. Furthermore, a series of experiments are conducted to evaluate the performance of the wheel–body coordinated locomotion on uneven ground, demonstrating the robustness even without requiring external sensing or sophisticated control strategies. In summary, the proposed multimodal mechanism significantly enhances the locomotion speed, terrain adaptability and robustness of snake robots. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

25 pages, 3724 KB  
Article
Research on Trajectory Tracking Control Method for Wheeled Robots Based on Seabed Soft Slopes on GPSO-MPC
by Dewei Li, Zizhong Zheng, Zhongjun Ding, Jichao Yang and Lei Yang
Sensors 2025, 25(16), 4882; https://doi.org/10.3390/s25164882 - 8 Aug 2025
Viewed by 320
Abstract
With advances in underwater exploration and intelligent ocean technologies, wheeled underwater mobile robots are increasingly used for seabed surveying, engineering, and environmental monitoring. However, complex terrains centered on seabed soft slopes—characterized by wheel slippage due to soil deformability and force imbalance arising from [...] Read more.
With advances in underwater exploration and intelligent ocean technologies, wheeled underwater mobile robots are increasingly used for seabed surveying, engineering, and environmental monitoring. However, complex terrains centered on seabed soft slopes—characterized by wheel slippage due to soil deformability and force imbalance arising from slope variations—pose challenges to the accuracy and robustness of trajectory tracking control systems. Model predictive control (MPC), known for predictive optimization and constraint handling, is commonly used in such tasks. Yet, its performance relies on manually tuned parameters and lacks adaptability to dynamic changes. This study introduces a hybrid grey wolf-particle swarm optimization (GPSO) algorithm, combining the exploratory ability of a grey wolf optimizer with the rapid convergence of particle swarm optimization. The GPSO algorithm adaptively tunes MPC parameters online to improve control. A kinematic model of a four-wheeled differential-drive robot is developed, and an MPC controller using error-state linearization is implemented. GPSO integrates hierarchical leadership and chaotic disturbance strategies to enhance global search and local convergence. Simulation experiments on circular and double-lane-change trajectories show that GPSO-MPC outperforms standard MPC and PSO-MPC in tracking accuracy, heading stability, and control smoothness. The results confirm the improved adaptability and robustness of the proposed method, supporting its effectiveness in dynamic underwater environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

23 pages, 5860 KB  
Article
Research on Motion Control Method of Wheel-Legged Robot in Unstructured Terrain Based on Improved Central Pattern Generator (CPG) and Biological Reflex Mechanism
by Jian Gao, Ruilin Fan, Hongtao Yang, Haonan Pang and Hangzhou Tian
Appl. Sci. 2025, 15(15), 8715; https://doi.org/10.3390/app15158715 - 6 Aug 2025
Viewed by 299
Abstract
With the development of inspection robot control technology, wheel-legged robots are increasingly used in complex underground space inspection. To address low stability during obstacle crossing in unstructured terrains, a motion control strategy integrating an improved CPG algorithm and a biological reflex mechanism is [...] Read more.
With the development of inspection robot control technology, wheel-legged robots are increasingly used in complex underground space inspection. To address low stability during obstacle crossing in unstructured terrains, a motion control strategy integrating an improved CPG algorithm and a biological reflex mechanism is proposed. It introduces an adaptive coupling matrix, augmented with the Lyapunov function, and vestibular/stumbling reflex models for real-time motion feedback. Simulink–Adams virtual prototypes and single-wheeled leg experiments (on the left front leg) were used to verify the system. Results show that the robot’s turning oscillation was ≤±0.00593 m, the 10° tilt maintained a stable center of mass at 10.2° with roll angle fluctuations ≤±5°, gully-crossing fluctuations ≤±0.01 m, and pitch recovery ≤2 s. The experiments aligned with the simulations, proving that the strategy effectively suppresses vertical vibrations, ensuring stable and high-precision inspection. Full article
Show Figures

Figure 1

25 pages, 10639 KB  
Article
Sliding Mode Control of the MY-3 Omnidirectional Mobile Robot Based on RBF Neural Networks
by Huaiyong Li, Changlong Ye, Song Tian and Suyang Yu
Machines 2025, 13(8), 695; https://doi.org/10.3390/machines13080695 - 6 Aug 2025
Viewed by 337
Abstract
Omnidirectional mobile robots have gained extensive application across diverse fields due to their exceptional maneuverability and adaptability in confined spaces. However, structural and systemic uncertainties significantly compromise motion accuracy. To enhance motion control precision, this paper proposes a sliding mode control (SMC) method [...] Read more.
Omnidirectional mobile robots have gained extensive application across diverse fields due to their exceptional maneuverability and adaptability in confined spaces. However, structural and systemic uncertainties significantly compromise motion accuracy. To enhance motion control precision, this paper proposes a sliding mode control (SMC) method integrated with a radial basis function (RBF) neural network. The approach aggregates model uncertainties, nonlinear dynamics, and unknown disturbances into a composite disturbance term. An RBF neural network is employed to approximate this disturbance, with compensation embedded within the SMC framework. An online adaptive law for neural network optimization is derived using the Lyapunov stability theorem, thereby improving the disturbance rejection capability. Comparative simulations and experiments validate the proposed method against modern control strategies. Results demonstrate superior tracking performance and robustness, significantly enhancing trajectory tracking accuracy for the MY3 wheeled omnidirectional mobile robot. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

19 pages, 4726 KB  
Article
Modeling and Adaptive Neural Control of a Wheeled Climbing Robot for Obstacle-Crossing
by Hongbo Fan, Shiqiang Zhu, Cheng Wang and Wei Song
Machines 2025, 13(8), 674; https://doi.org/10.3390/machines13080674 - 1 Aug 2025
Viewed by 301
Abstract
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of [...] Read more.
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of magnetic wheels in response to real-time changes in the dynamic model. This limitation makes it challenging to precisely control the robot’s speed and attitude angles during the obstacle-crossing process. To address this issue, this paper first establishes a staged dynamic model for the wall-climbing robot under typical obstacle-crossing scenarios, including steps, 90° concave corners, 90° convex corners, and thin plates. Secondly, an adaptive controller based on a radial basis function neural network (RBFNN) is designed to effectively compensate for variations and uncertainties during the obstacle-crossing process. Finally, comparative simulations and physical experiments demonstrate the effectiveness of the proposed method. The experimental results show that this method can quickly respond to the dynamic changes in the model and accurately track the trajectory, thereby improving the control precision and stability during the obstacle-crossing process. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

21 pages, 8688 KB  
Article
Design and Dynamic Performance Evaluation of a Novel 6W4L Wheel-Legged Robot
by Weiwei Hu, Ruiqin Li, Wenxiao Guo, Fengping Ning and Lei Zhang
Machines 2025, 13(8), 662; https://doi.org/10.3390/machines13080662 - 28 Jul 2025
Viewed by 352
Abstract
To improve the mobility of mobile robots in complex terrain environments, a novel 2-UPS&PRPU parallel mechanism is proposed, for which the parallel mechanism branched-chain decomposition and synthesis method is adopted. Based on the structural characteristics of the Hooke joint kinematic substructure, an inverse [...] Read more.
To improve the mobility of mobile robots in complex terrain environments, a novel 2-UPS&PRPU parallel mechanism is proposed, for which the parallel mechanism branched-chain decomposition and synthesis method is adopted. Based on the structural characteristics of the Hooke joint kinematic substructure, an inverse solution calculation for the mechanism is carried out, and the parameters of the simulation model are formulated to determine the workspace of the parallel mechanism. The linear velocity dexterity and minimum output carrying capacity of the parallel mechanism are analyzed, allowing the optimal parameters of the mechanism to be selected through dimension optimization, thus greatly improving the mechanism’s linear velocity dexterity and carrying capacity. The results show that the proposed parallel mechanism can satisfy the mobility requirements of mobile robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

16 pages, 2662 KB  
Article
Electronic Control Unit and Digital Twin Based on Raspberry Pi 4 for Testing the Remote Nonlinear Trajectory Tracking of a P3-DX Robot
by Cristina Losada-Gutiérrez, Felipe Espinosa, Carlos Cruz and Biel P. Alvarado
Actuators 2025, 14(8), 376; https://doi.org/10.3390/act14080376 - 27 Jul 2025
Viewed by 428
Abstract
The properties of Hardware-in-the-Loop (HIL) for the development of controllers, together with electronic emulation of physical process by Digital Twins (DT) significantly enhance the optimization of design and implementation in nonlinear control applications. The study emphasizes the use of the Raspberry Pi (RBP), [...] Read more.
The properties of Hardware-in-the-Loop (HIL) for the development of controllers, together with electronic emulation of physical process by Digital Twins (DT) significantly enhance the optimization of design and implementation in nonlinear control applications. The study emphasizes the use of the Raspberry Pi (RBP), a low-cost and portable electronic board for two interrelated goals: (a) the Electronic Control Unit (ECU-RBP) implementing a Lyapunov-based Controller (LBC) for nonlinear trajectory tracking of P3DX wheeled robots, and (b) the Digital Twin (DT-RPB) emulating the real robot behavior, which is remotely connected to the control unit. ECU-RBP, DT-RBP and real robot are connected as nodes within the same wireless network, enhancing interaction between the three physical elements. The development process is supported by the Matlab/Simulink environment and the associated packages for the specified electronic board. Following testing of the real robot from the ECU-RBP in an open loop, the model is identified and integrated into the DT-RBP to replicate its functionality. The LBC solution, which has also been validated through simulation, is implemented in the ECU-RBP to examine the closed-loop control according to the HIL strategy. Finally, the study evaluates the effectiveness of the HIL approach by comparing the results obtained from the application of the LBC, as implemented in the ECU-RBP to both the real robot and its DT. Full article
(This article belongs to the Special Issue Nonlinear Control of Mechanical and Robotic Systems)
Show Figures

Figure 1

46 pages, 125285 KB  
Article
ROS-Based Autonomous Driving System with Enhanced Path Planning Node Validated in Chicane Scenarios
by Mohamed Reda, Ahmed Onsy, Amira Y. Haikal and Ali Ghanbari
Actuators 2025, 14(8), 375; https://doi.org/10.3390/act14080375 - 27 Jul 2025
Viewed by 364
Abstract
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that [...] Read more.
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that supports the modular development and integration of these layers. Among them, the path-planning and control layers remain particularly challenging due to several limitations. Classical path planners often struggle with non-smooth trajectories and high computational demands. Meta-heuristic optimization algorithms have demonstrated strong theoretical potential in path planning; however, they are rarely implemented in real-time ROS-based systems due to integration challenges. Similarly, traditional PID controllers require manual tuning and are unable to adapt to system disturbances. This paper proposes a ROS-based ADS architecture composed of eight integrated nodes, designed to address these limitations. The path-planning node leverages a meta-heuristic optimization framework with a cost function that evaluates path feasibility using occupancy grids from the Hector SLAM and obstacle clusters detected through the DBSCAN algorithm. A dynamic goal-allocation strategy is introduced based on the LiDAR range and spatial boundaries to enhance planning flexibility. In the control layer, a modified Pure Pursuit algorithm is employed to translate target positions into velocity commands based on the drift angle. Additionally, an adaptive PID controller is tuned in real time using the Differential Evolution (DE) algorithm, ensuring robust speed regulation in the presence of external disturbances. The proposed system is practically validated on a four-wheel differential drive robot across six scenarios. Experimental results demonstrate that the proposed planner significantly outperforms state-of-the-art methods, ranking first in the Friedman test with a significance level less than 0.05, confirming the effectiveness of the proposed architecture. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

32 pages, 5721 KB  
Review
Control Strategies for Two-Wheeled Self-Balancing Robotic Systems: A Comprehensive Review
by Huaqiang Zhang and Norzalilah Mohamad Nor
Robotics 2025, 14(8), 101; https://doi.org/10.3390/robotics14080101 - 26 Jul 2025
Viewed by 641
Abstract
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review [...] Read more.
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review of control strategies applied to TWSBRs, encompassing classical linear approaches such as PID and LQR, modern nonlinear methods including sliding mode control (SMC), model predictive control (MPC), and intelligent techniques such as fuzzy logic, neural networks, and reinforcement learning. Additionally, supporting techniques such as state estimation, observer design, and filtering are discussed in the context of their importance to control implementation. The evolution of control theory is analyzed, and a detailed taxonomy is proposed to classify existing works. Notably, a comparative analysis section is included, offering practical guidelines for selecting suitable control strategies based on system complexity, computational resources, and robustness requirements. This review aims to support both academic research and real-world applications by summarizing key methodologies, identifying open challenges, and highlighting promising directions for future development. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

8 pages, 1542 KB  
Proceeding Paper
Mapless Navigation with Deep Reinforcement Learning in Indoor Environment
by Anastasiya Slavova and Vladimir Hristov
Eng. Proc. 2025, 100(1), 63; https://doi.org/10.3390/engproc2025100063 - 25 Jul 2025
Viewed by 233
Abstract
One of the crucial tasks for autonomous robots is learning to safely navigate through obstacles in real-world environments. An intelligent robot must not only perform the assigned task but also adapt to changes in its environment as quickly as possible. In this work, [...] Read more.
One of the crucial tasks for autonomous robots is learning to safely navigate through obstacles in real-world environments. An intelligent robot must not only perform the assigned task but also adapt to changes in its environment as quickly as possible. In this work, we propose an improved version of the Deep Reinforcement Learning (DRL) Proximal Policy Optimization (PPO) algorithm by modifying a deep neural network of the Actor and Critic. Then we compare the results of our work by comparing them with those of classical PPO. Algorithm testing is conducted in a Flatland simulation environment, which allows for integration with the ROS2 operating environment. Full article
Show Figures

Figure 1

21 pages, 2941 KB  
Article
Dynamic Proxemic Model for Human–Robot Interactions Using the Golden Ratio
by Tomáš Spurný, Ján Babjak, Zdenko Bobovský and Aleš Vysocký
Appl. Sci. 2025, 15(15), 8130; https://doi.org/10.3390/app15158130 - 22 Jul 2025
Viewed by 670
Abstract
This paper presents a novel approach to determine dynamic safety and comfort zones in human–robot interactions (HRIs), with a focus on service robots operating in dynamic environments with people. The proposed proxemic model leverages the golden ratio-based comfort zone distribution and ISO safety [...] Read more.
This paper presents a novel approach to determine dynamic safety and comfort zones in human–robot interactions (HRIs), with a focus on service robots operating in dynamic environments with people. The proposed proxemic model leverages the golden ratio-based comfort zone distribution and ISO safety standards to define adaptive proxemic boundaries for robots around humans. Unlike traditional fixed-threshold approaches, this novel method proposes a gradual and context-sensitive modulation of robot behaviour based on human position, orientation, and relative velocity. The system was implemented on an NVIDIA Jetson Xavier NX platform using a ZED 2i stereo depth camera Stereolabs, New York, USA and tested on two mobile robotic platforms: Go1 Unitree, Hangzhou, China (quadruped) and Scout Mini Agilex, Dongguan, China (wheeled). The initial verification of proposed proxemic model through experimental comfort validation was conducted using two simple interaction scenarios, and subjective feedback was collected from participants using a modified Godspeed Questionnaire Series. The results show that the participants felt comfortable during the experiments with robots. This acceptance of the proposed methodology plays an initial role in supporting further research of the methodology. The proposed solution also facilitates integration into existing navigation frameworks and opens pathways towards socially aware robotic systems. Full article
(This article belongs to the Special Issue Intelligent Robotics: Design and Applications)
Show Figures

Figure 1

23 pages, 3554 KB  
Article
Multi-Sensor Fusion Framework for Reliable Localization and Trajectory Tracking of Mobile Robot by Integrating UWB, Odometry, and AHRS
by Quoc-Khai Tran and Young-Jae Ryoo
Biomimetics 2025, 10(7), 478; https://doi.org/10.3390/biomimetics10070478 - 21 Jul 2025
Viewed by 681
Abstract
This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion [...] Read more.
This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion approach reduces the impact of noisy and inaccurate UWB measurements while correcting odometry drift. The system combines raw UWB distance measurements with wheel encoder readings and heading information from an AHRS to improve robustness and positioning accuracy. Experimental validation was conducted through repeated closed-loop trajectory trials. The results demonstrate that the proposed method significantly outperforms UWB-only localization, yielding reduced noise, enhanced consistency, and lower Dynamic Time Warping (DTW) distances across repetitions. The findings confirm the system’s effectiveness and suitability for real-time mobile robot navigation in indoor environments. Full article
(This article belongs to the Special Issue Advanced Intelligent Systems and Biomimetics)
Show Figures

Figure 1

25 pages, 6969 KB  
Article
An Analysis of the Design and Kinematic Characteristics of an Octopedic Land–Air Bionic Robot
by Jianwei Zhao, Jiaping Gao, Mingsong Bao, Hao Zhai, Xu Pei and Zheng Jiang
Sensors 2025, 25(14), 4502; https://doi.org/10.3390/s25144502 - 19 Jul 2025
Viewed by 544
Abstract
The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to [...] Read more.
The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to construct a highly adaptive robot architecture capable of intelligently adjusting the wheel-leg configuration to cope with changing environments. An advanced kinematic analysis and simulation techniques are combined with inverse kinematic algorithms and dynamic planning to achieve a typical ‘Step-Wise Octopedal Dynamic Coordination Gait’ and different gait planning and optimization. The effectiveness of the design and control strategy is verified through the construction of an experimental platform and field tests, significantly improving the robot’s adaptability and mobility in complex terrain. Additionally, an optional integrated quadrotor module with a compact folding mechanism is incorporated, enabling the robot to overcome otherwise impassable obstacles via short-distance flight when ground locomotion is impaired. This achievement not only enriches the theory and methodology of the multi-legged robot design but also establishes a solid foundation for its widespread application in disaster rescue, exploration, and industrial automation. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

Back to TopTop