Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = wide-angle neutron diffraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1076 KB  
Article
Computation of X-ray and Neutron Scattering Patterns to Benchmark Atomistic Simulations against Experiments
by Arnab Majumdar, Martin Müller and Sebastian Busch
Int. J. Mol. Sci. 2024, 25(3), 1547; https://doi.org/10.3390/ijms25031547 - 26 Jan 2024
Cited by 1 | Viewed by 2187
Abstract
Molecular Dynamics simulations study material structure and dynamics at the atomic level. X-ray and neutron scattering experiments probe exactly the same time- and length scales as the simulations. In order to benchmark simulations against measured scattering data, a program is required that computes [...] Read more.
Molecular Dynamics simulations study material structure and dynamics at the atomic level. X-ray and neutron scattering experiments probe exactly the same time- and length scales as the simulations. In order to benchmark simulations against measured scattering data, a program is required that computes scattering patterns from simulations with good single-core performance and support for parallelization. In this work, the existing program Sassena is used as a potent solution to this requirement for a range of scattering methods, covering pico- to nanosecond dynamics, as well as the structure from some Ångströms to hundreds of nanometers. In the case of nanometer-level structures, the finite size of the simulation box, which is referred to as the finite size effect, has to be factored into the computations for which a method is described and implemented into Sassena. Additionally, the single-core and parallelization performance of Sassena is investigated, and several improvements are introduced. Full article
(This article belongs to the Special Issue Research on Molecular Dynamics: 2nd Edition)
Show Figures

Figure 1

20 pages, 3433 KB  
Article
Aqueous Binary Mixtures of Stearic Acid and Its Hydroxylated Counterpart 12-Hydroxystearic Acid: Fine Tuning of the Lamellar/Micelle Threshold Temperature Transition and of the Micelle Shape
by Maëva Almeida, Daniel Dudzinski, Bastien Rousseau, Catherine Amiel, Sylvain Prévost, Fabrice Cousin and Clémence Le Coeur
Molecules 2023, 28(17), 6317; https://doi.org/10.3390/molecules28176317 - 29 Aug 2023
Cited by 4 | Viewed by 1817
Abstract
This study examines the structures of soft surfactant-based biomaterials which can be tuned by temperature. More precisely, investigated here is the behavior of stearic acid (SA) and 12-hydroxystearic acid (12-HSA) aqueous mixtures as a function of temperature and the 12-HSA/SA molar ratio (R). [...] Read more.
This study examines the structures of soft surfactant-based biomaterials which can be tuned by temperature. More precisely, investigated here is the behavior of stearic acid (SA) and 12-hydroxystearic acid (12-HSA) aqueous mixtures as a function of temperature and the 12-HSA/SA molar ratio (R). Whatever R is, the system exhibits a morphological transition at a given threshold temperature, from multilamellar self-assemblies at low temperature to small micelles at high temperature, as shown by a combination of transmittance measurements, Wide Angle X-ray diffraction (WAXS), small angle neutron scattering (SANS), and differential scanning calorimetry (DSC) experiments. The precise determination of the threshold temperature, which ranges between 20 °C and 50 °C depending on R, allows for the construction of the whole phase diagram of the system as a function of R. At high temperature, the micelles that are formed are oblate for pure SA solutions (R = 0) and prolate for pure 12-HSA solutions (R = 1). In the case of mixtures, there is a progressive continuous transition from oblate to prolate shapes when increasing R, with micelles that are almost purely spherical for R = 0.33. Full article
(This article belongs to the Special Issue Responsive Soft Materials Based on Biomolecules)
Show Figures

Graphical abstract

44 pages, 19950 KB  
Review
Hybridization of Wide-Angle X-ray and Neutron Diffraction Techniques in the Crystal Structure Analyses of Synthetic Polymers
by Kohji Tashiro, Katsuhiro Kusaka, Hiroko Yamamoto, Takaaki Hosoya, Shuji Okada and Takashi Ohhara
Polymers 2023, 15(2), 465; https://doi.org/10.3390/polym15020465 - 16 Jan 2023
Cited by 5 | Viewed by 3508
Abstract
The development in the crystal structure analysis of synthetic polymers using the hybridized combination of wide-angle X-ray and neutron diffraction (WAXD and WAND, respectively) techniques has been reviewed with many case studies performed by the authors. At first, the technical development was reviewed, [...] Read more.
The development in the crystal structure analysis of synthetic polymers using the hybridized combination of wide-angle X-ray and neutron diffraction (WAXD and WAND, respectively) techniques has been reviewed with many case studies performed by the authors. At first, the technical development was reviewed, in which the usage of high-energy synchrotron X-ray source was emphasized for increasing the total number of the observable diffraction peaks, and several examples were introduced. Secondly, the usage of the WAND method was introduced, in which the successful extraction of hydrogen atomic positions was described. The third example is to show the importance for the hybrid combination of these two diffraction methods. The quantitative WAXD data analysis gave the crystal structures of at-poly(vinyl alcohol) (at-PVA) and at-PVA-iodine complex. However, the thus-proposed structure models were found not to reproduce the observed WAND data very much. The reason came from the remarkable difference in the atomic scattering powers of the constituting atomic species between WAXD and WAND phenomena. The introduction of statistical disorder solved this serious problem, which reproduced both of the observed WAXD and WAND data consistently. The more systematic combination of WAXD and WAND methods, or the so-called X-N method, was applied also to the quantitative evaluation of the bonded electron density distribution along the skeletal chains, where the results about polydiacetylene single crystals were presented as the first successful study. Finally, the application of WAND technique in the trace of structural changes induced under the application of external stress or temperature was described. The future perspective is described for the development of structural science of synthetic polymers on the basis of the combined WAXD/WAND techniques. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Figure 1

12 pages, 1144 KB  
Article
Octahedral Tilting in Homologous Perovskite Series CaMoO3-SrMoO3-BaMoO3 Probed by Temperature-Dependent EXAFS Spectroscopy
by Georgijs Bakradze and Alexei Kuzmin
Materials 2022, 15(21), 7619; https://doi.org/10.3390/ma15217619 - 30 Oct 2022
Cited by 3 | Viewed by 2347
Abstract
Local distortions in perovskites can be induced by cation displacements and/or by the tilting and rotating of cation–anion octahedra. Both phenomena have been subject to intense investigations over many years. However, there are still controversies in the results obtained from experimental techniques that [...] Read more.
Local distortions in perovskites can be induced by cation displacements and/or by the tilting and rotating of cation–anion octahedra. Both phenomena have been subject to intense investigations over many years. However, there are still controversies in the results obtained from experimental techniques that are sensitive to long-range order (X-ray, neutron, or electron diffraction) and those sensitive to short-range order (X-ray absorption spectroscopy). In this study, we probed the details of the local environment in AMoO3 perovskites (A = Ca, Sr, Ba) using extended X-ray absorption fine structure (EXAFS) in a wide temperature range (10–300 K). An advanced analysis of the EXAFS spectra within the multiple-scattering formalism using the reverse Monte Carlo method enhanced by an evolutionary algorithm allowed us (i) to extract detailed information on metal–oxygen and metal–metal radial distribution functions, and metal–oxygen–metal and oxygen–metal–oxygen bond angle distribution functions, and (ii) to perform polyhedral analysis. The obtained results demonstrate the strong sensitivity of the EXAFS spectra to the tilting of [MoO6] octahedra induced by the differences in the sizes of alkaline earth metal cations (Ca2+, Sr2+, and Ba2+). Full article
(This article belongs to the Special Issue Perovskite Nanomaterials for Functional Devices and Sensors)
Show Figures

Figure 1

15 pages, 5457 KB  
Article
Intact, Commercial Lithium-Polymer Batteries: Spatially Resolved Grating-Based Interferometry Imaging, Bragg Edge Imaging, and Neutron Diffraction
by Adam J. Brooks, Daniel S. Hussey, Kyungmin Ham, David L. Jacobson, Ingo Manke, Nikolay Kardjilov and Leslie G. Butler
Appl. Sci. 2022, 12(3), 1281; https://doi.org/10.3390/app12031281 - 25 Jan 2022
Cited by 4 | Viewed by 3543
Abstract
We survey several neutron imaging and diffraction methods for non-destructive testing and evaluation of intact, commercial lithium-ion batteries. Specifically, far-field interferometry was explored as an option to probe a wide range of autocorrelation lengths within the batteries via neutron imaging. The dark-field interferometry [...] Read more.
We survey several neutron imaging and diffraction methods for non-destructive testing and evaluation of intact, commercial lithium-ion batteries. Specifically, far-field interferometry was explored as an option to probe a wide range of autocorrelation lengths within the batteries via neutron imaging. The dark-field interferometry images change remarkably from fresh to worn batteries, and from charged to discharged batteries. When attempting to search for visual evidence of battery degradation, neutron Talbot-Lau grating interferometry exposed battery layering and particle scattering through dark-field imaging. Bragg edge imaging also reveals battery wear and state of charge. Neutron diffraction observed chemical changes between fresh and worn, charged and discharged batteries. However, the utility of these methods, for commercial batteries, is dependent upon battery size and shape, with 19 to 43 mAh prismatic batteries proving most convenient for these experimental methods. This study reports some of the first spatially resolved, small angle scattering (dark-field) images showing battery degradation. Full article
(This article belongs to the Special Issue Neutron Dark-Field Imaging and Grating Interferometry)
Show Figures

Figure 1

16 pages, 4308 KB  
Article
Dynamic Processes and Mechanisms Involved in Relaxations of Single-Chain Nano-Particle Melts
by Jon Maiz, Ester Verde-Sesto, Isabel Asenjo-Sanz, Paula Malo de Molina, Bernhard Frick, José A. Pomposo, Arantxa Arbe and Juan Colmenero
Polymers 2021, 13(14), 2316; https://doi.org/10.3390/polym13142316 - 14 Jul 2021
Cited by 8 | Viewed by 2653
Abstract
We present a combined study by quasielastic neutron scattering (QENS), dielectric and mechanical spectroscopy, calorimetry and wide-angle X-ray diffraction on single-chain nano-particles (SCNPs), using the corresponding linear precursor chains as reference, to elucidate the impact of internal bonds involving bulky cross-links on the [...] Read more.
We present a combined study by quasielastic neutron scattering (QENS), dielectric and mechanical spectroscopy, calorimetry and wide-angle X-ray diffraction on single-chain nano-particles (SCNPs), using the corresponding linear precursor chains as reference, to elucidate the impact of internal bonds involving bulky cross-links on the properties of polymer melts. Internal cross-links do not appreciably alter local properties and fast dynamics. This is the case of the average inter-molecular distances, the β-relaxation and the extent of the atomic displacements at timescales faster than some picoseconds. Contrarily, the α-relaxation is slowed down with respect to the linear precursor, as detected by DSC, dielectric spectroscopy and QENS. QENS has also resolved broader response functions and stronger deviations from Gaussian behavior in the SCNPs melt, hinting at additional heterogeneities. The rheological properties are also clearly affected by internal cross-links. We discuss these results together with those previously reported on the deuterated counterpart samples and on SCNPs obtained through a different synthesis route to discern the effect of the nature of the cross-links on the modification of the diverse properties of the melts. Full article
(This article belongs to the Special Issue Polymers and Soft Matter: From Synthesis to Structure & Dynamics)
Show Figures

Graphical abstract

21 pages, 1955 KB  
Review
Neutron Scattering as a Powerful Tool to Investigate Magnetic Shape Memory Alloys: A Review
by Natalia A. Río-López, Patricia Lázpita, Daniel Salazar, Viktor I. Petrenko, Fernando Plazaola, Volodymyr Chernenko and Jose M. Porro
Metals 2021, 11(5), 829; https://doi.org/10.3390/met11050829 - 18 May 2021
Cited by 13 | Viewed by 5262
Abstract
Magnetic shape memory alloys (MSMAs) are an interesting class of smart materials characterized by undergoing macroscopic deformations upon the application of a pertinent stimulus: temperature, stress and/or external magnetic fields. Since the deformation is rapid and contactless, these materials are being extensively investigated [...] Read more.
Magnetic shape memory alloys (MSMAs) are an interesting class of smart materials characterized by undergoing macroscopic deformations upon the application of a pertinent stimulus: temperature, stress and/or external magnetic fields. Since the deformation is rapid and contactless, these materials are being extensively investigated for a plethora of applications, such as sensors and actuators for the medical, automotive and space industries, energy harvesting and damping devices, among others. These materials also exhibit a giant magnetocaloric effect, whereby they are very promising for magnetic refrigeration. The applications in which they can be used are extremely dependent on the material properties, which are, in turn, greatly conditioned by the structure, atomic ordering and magnetism of a material. Particularly, exploring the material structure is essential in order to push forward the current application limitations of the MSMAs. Among the wide range of available characterization tools, neutron scattering techniques stand out in acquiring advanced knowledge about the structure and magnetism of these alloys. Throughout this manuscript, a comprehensive review about the characterization of MSMAs using neutron techniques is presented. Several elastic neutron scattering techniques will be explained and exemplified, covering neutron imaging techniques—such as radiography, tomography and texture diffractometry; diffraction techniques—magnetic (polarized neutron) diffraction, powder neutron diffraction and single crystal neutron diffraction, reflectometry and small angle neutron scattering. This will be complemented with a few examples where inelastic neutron scattering has been employed to obtain information about the phonon dispersion in MSMAs. Full article
(This article belongs to the Special Issue Recent Development in Magnetic Shape Memory Alloys)
Show Figures

Figure 1

24 pages, 15434 KB  
Article
Crystallographic and Seismic Anisotropies of Calcite at Different Depths: A Study Using Quantitative Texture Analysis by Neutron Diffraction
by Michele Zucali, Daniel Chateigner and and Bachir Ouladdiaf
Minerals 2020, 10(1), 26; https://doi.org/10.3390/min10010026 - 27 Dec 2019
Cited by 4 | Viewed by 3845
Abstract
Eight samples of limestones and marbles were studied by neutron diffraction to collect quantitative texture (i.e., crystallographic preferred orientations or CPO) of calcite deforming at different depths in the crust. We studied the different Texture patterns developed in shear zones at different depth [...] Read more.
Eight samples of limestones and marbles were studied by neutron diffraction to collect quantitative texture (i.e., crystallographic preferred orientations or CPO) of calcite deforming at different depths in the crust. We studied the different Texture patterns developed in shear zones at different depth and their influence on seismic anisotropies. Samples were collected in the French and Italian Alps, Apennines, and Paleozoic Sardinian basement. They are characterized by isotropic to highly anisotropic (e.g., mylonite shear zone) fabrics. Mylonite limestones occur as shear zone horizons within the Cenozoic Southern Domain in Alpine thrust-and-fold belts (Italy), the Briançonnais domain of the Western Alps (Italy-France border), the Sardinian Paleozoic back-thrusts, or in the Austroalpine intermediate units. The analyzed marbles were collected in the Carrara Marble, in the Austroalpine Units in the Central (Mortirolo) and Western Alps (Valpelline). The temperature and depth of development of fabrics vary from <100 C, to 800 C and depth from <10 km to about 30 km, corresponding from upper to lower crust conditions. Quantitative Texture Analysis shows different types of patterns for calcite: random to strongly textured. Textured types may be further separated in orthorhombic and monoclinic (Types A and B), based on the angle defined with the mesoscopic fabrics. Seismic anisotropies were calculated by homogenizing the single-crystal elastic tensor, using the Orientation Distribution Function calculated by Quantitative Texture Analysis. The resulting P- and S-wave anisotropies show a wide variability due to the textural types, temperature and pressure conditions, and dip of the shear planes. Full article
(This article belongs to the Special Issue Texture and Microstructural Analysis of Crystalline Solids)
Show Figures

Graphical abstract

9 pages, 22325 KB  
Article
The DN-6 Neutron Diffractometer for High-Pressure Research at Half a Megabar Scale
by Denis Kozlenko, Sergey Kichanov, Evgenii Lukin and Boris Savenko
Crystals 2018, 8(8), 331; https://doi.org/10.3390/cryst8080331 - 20 Aug 2018
Cited by 53 | Viewed by 5392
Abstract
A neutron diffractometer DN-6 at the IBR-2 high-flux reactor is used for the studies of crystal and magnetic structure of powder materials under high pressure in a wide temperature range. The high neutron flux on the sample due to a parabolic focusing section [...] Read more.
A neutron diffractometer DN-6 at the IBR-2 high-flux reactor is used for the studies of crystal and magnetic structure of powder materials under high pressure in a wide temperature range. The high neutron flux on the sample due to a parabolic focusing section of a neutron guide and wide solid angle of the detector system enables neutron diffraction experiments with extraordinarily small volumes (about 0.01 mm3) of studied samples. The diffractometer is equipped with high-pressure cells with sapphire and diamond anvils, which allow pressures of up to 50 GPa to be reached. The technical design, main parameters and current capabilities of the diffractometer are described. A brief overview of recently obtained results is given. Full article
(This article belongs to the Special Issue Neutron Diffractometers for Single Crystals and Powders)
Show Figures

Figure 1

15 pages, 13693 KB  
Article
Induced Mesocrystal-Formation, Hydrothermal Growth and Magnetic Properties of α-Fe2O3 Nanoparticles in Salt-Rich Aqueous Solutions
by Erik Brok, Jacob Larsen, Miriam Varón, Thomas W. Hansen and Cathrine Frandsen
Crystals 2017, 7(8), 248; https://doi.org/10.3390/cryst7080248 - 8 Aug 2017
Cited by 4 | Viewed by 5528
Abstract
Iron oxide nanoparticles are widely prevalent in our aqueous environment (e.g., streams, seawater, hydrothermal vents). Their aggregation and crystal growth depend on their chemical surroundings, for instance just a change in pH or salt concentration can greatly affect this. In turn this influences [...] Read more.
Iron oxide nanoparticles are widely prevalent in our aqueous environment (e.g., streams, seawater, hydrothermal vents). Their aggregation and crystal growth depend on their chemical surroundings, for instance just a change in pH or salt concentration can greatly affect this. In turn this influences their properties, mobility, fate, and environmental impact. We studied the growth of α-Fe2O3 (hematite), starting from 8 nm hematite particles in weakly acidic (HNO3) aqueous suspension with different states of particle aggregation, using salt (NaCl and NaH2PO4) to control their initial aggregation state. The samples were then subject to hydrothermal treatment at 100–140 °C. We followed the development in aggregation state and particle size by dynamic light scattering, X-ray diffraction, small angle neutron scattering and transmission electron microscopy, and the magnetic properties by Mössbauer spectroscopy. The addition of NaCl and NaH2PO4 both led to aggregation, but NaCl led to linear chains of hematite nanoparticles (oriented parallel to their hexagonal c-axis), such that the crystalline lattice planes of neighboring hematite particles were aligned. However, despite this oriented alignment, the particles did not merge and coalesce. Rather they remained stable as mesocrystals until heat-treated. In turn, the addition of NaCl significantly increases the rate of growth during hydrothermal treatment, probably because the nanoparticles, due to the chain formation, are already aligned and in close proximity. With hydrothermal treatment, the magnetic properties of the particles transform from those characteristic of small (aggregated) hematite nanoparticles to those of particles with more bulk-like properties such as Morin transition and suppression of superparamagnetic relaxation, in correspondence with the growth of particle size. Full article
(This article belongs to the Special Issue Mesocrystals and Hierarchical Structures)
Show Figures

Figure 1

13 pages, 2564 KB  
Article
Characterization of Precipitates in a Microalloyed Steel Using Quantitative X-ray Diffraction
by J. Barry Wiskel, Junfang Lu, Oladipo Omotoso, Douglas G. Ivey and Hani Henein
Metals 2016, 6(4), 90; https://doi.org/10.3390/met6040090 - 19 Apr 2016
Cited by 13 | Viewed by 7257
Abstract
Quantitative X-ray diffraction (QXRD) (also known as the Rietveld method) was used to analyze the precipitates present in Grade 100 microalloyed steel. The precipitates were extracted from the steel using electrolytic dissolution and the residue from the dissolution was analyzed using XRD. The [...] Read more.
Quantitative X-ray diffraction (QXRD) (also known as the Rietveld method) was used to analyze the precipitates present in Grade 100 microalloyed steel. The precipitates were extracted from the steel using electrolytic dissolution and the residue from the dissolution was analyzed using XRD. The XRD pattern exhibited three (3) distinct diffraction peaks, and significant broadening of a fourth peak corresponding to the <10 nm size precipitates. QXRD analysis was applied to the XRD pattern to obtain precipitate size, composition, and weight fraction data for each of the four diffraction peaks observed. The predicted mean precipitate diameter and average atomic composition of the nano-size (<10 nm) precipitates was 4.7 nm and (Nb0.50Ti0.32Mo0.18)(C0.59N0.41), respectively. The predicted precipitate size correlates well with the average size of precipitates measured in previous work by the authors using both transmission electron microscopy (TEM) and small angle neutron scattering (SANS). The average atomic composition correlates well with the composition measured in this work using energy dispersive X-ray (EDX) analysis of individual nano-sized precipitates. The calculated weight fraction of the nano-size precipitates in the extracted residue was 42.2 wt. %. The calculated atomic compositions of the other three diffraction peaks were TiN, (Ti0.87Nb0.13)N, and (Nb0.82Ti0.18)(C0.87N0.13) with weight fraction values of 12.9 wt. %, 31.7 wt. %, and 13.1 wt. %, respectively. The sizes of both the (Ti0.87Nb0.13)N and the (Nb0.82Ti0.18)(C0.87N0.13) groups of precipitates were directly measured and were observed to range from 150 nm to 570 nm and from 90 nm to 475 nm, respectively. QXRD was unable to determine a reasonable mean precipitate size for either of these two groups of precipitates. The wide compositional range (i.e., varying levels of Nb and Ti) of these precipitates (as measured by EDX) resulted in XRD peak broadening that was erroneously interpreted as a size broadening effect. Full article
(This article belongs to the Special Issue Microalloyed Steel)
Show Figures

Figure 1

Back to TopTop