Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (879)

Search Parameters:
Keywords = wind-power forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 4201 KB  
Article
Comparative Performance Analysis of Deep Learning-Based Diagnostic and Predictive Models in Grid-Integrated Doubly Fed Induction Generator Wind Turbines
by Ramesh Kumar Behara and Akshay Kumar Saha
Energies 2025, 18(17), 4725; https://doi.org/10.3390/en18174725 - 5 Sep 2025
Viewed by 170
Abstract
As the deployment of wind energy systems continues to rise globally, ensuring the reliability and efficiency of grid-connected Doubly Fed Induction Generator (DFIG) wind turbines has become increasingly critical. Two core challenges faced by these systems include fault diagnosis in power electronic converters [...] Read more.
As the deployment of wind energy systems continues to rise globally, ensuring the reliability and efficiency of grid-connected Doubly Fed Induction Generator (DFIG) wind turbines has become increasingly critical. Two core challenges faced by these systems include fault diagnosis in power electronic converters and accurate prediction of wind conditions for adaptive power control. Recent advancements in artificial intelligence (AI) have introduced powerful tools for addressing these challenges. This study presents the first unified comparative performance analysis of two deep learning-based models: (i) a Convolutional Neural Network-Long Short-Term Memory CNN-LSTM with Variational Mode Decomposition for real-time Grid Side Converter (GSC) fault diagnosis, and (ii) an Incremental Generative Adversarial Network (IGAN) for wind attribute prediction and adaptive droop gain control, applied to grid-integrated DFIG wind turbines. Unlike prior studies that address fault diagnosis and wind forecasting separately, both models are evaluated within a common MATLAB/Simulink framework using identical wind profiles, disturbances, and system parameters, ensuring fair and reproducible benchmarking. Beyond accuracy, the analysis incorporates multi-dimensional performance metrics such as inference latency, robustness to disturbances, scalability, and computational efficiency, offering a more holistic assessment than prior work. The results reveal complementary strengths: the CNN-LSTM achieves 88% accuracy with 15 ms detection latency for converter faults, while the IGAN delivers more than 95% prediction accuracy and enhances frequency stability by 18%. Comparative analysis shows that while the CNN-LSTM model is highly suitable for rapid fault localization and maintenance planning, the IGAN model excels in predictive control and grid performance optimization. Unlike prior studies, this work establishes the first direct comparative framework for diagnostic and predictive AI models in DFIG systems, providing novel insights into their complementary strengths and practical deployment trade-offs. This dual evaluation lays the groundwork for hybrid two-tier AI frameworks in smart wind energy systems. By establishing a reproducible methodology and highlighting practical deployment trade-offs, this study offers valuable guidance for researchers and practitioners seeking explainable, adaptive, and computationally efficient AI solutions for next-generation renewable energy integration. Full article
Show Figures

Figure 1

20 pages, 4585 KB  
Article
MMamba: An Efficient Multimodal Framework for Real-Time Ocean Surface Wind Speed Inpainting Using Mutual Information and Attention-Mamba-2
by Xinjie Shi, Weicheng Ni, Boheng Duan, Qingguo Su, Lechao Liu and Kaijun Ren
Remote Sens. 2025, 17(17), 3091; https://doi.org/10.3390/rs17173091 - 4 Sep 2025
Viewed by 203
Abstract
Accurate observations of Ocean Surface Wind Speed (OSWS) are vital for predicting extreme weather and understanding ocean–atmosphere interactions. However, spaceborne sensors (e.g., ASCAT, SMAP) often experience data loss due to harsh weather and instrument malfunctions. Existing inpainting methods often rely on reanalysis data [...] Read more.
Accurate observations of Ocean Surface Wind Speed (OSWS) are vital for predicting extreme weather and understanding ocean–atmosphere interactions. However, spaceborne sensors (e.g., ASCAT, SMAP) often experience data loss due to harsh weather and instrument malfunctions. Existing inpainting methods often rely on reanalysis data that is released with delays, which restricts their real-time capability. Additionally, deep-learning-based methods, such as Transformers, face challenges due to their high computational complexity. To address these challenges, we present the Multimodal Wind Speed Inpainting Dataset (MWSID), which integrates 12 auxiliary forecasting variables to support real-time OSWS inpainting. Based on MWSID, we propose the MMamba framework, combining the Multimodal Feature Extraction module, which uses mutual information (MI) theory to optimize feature selection, and the OSWS Reconstruction module, which employs Attention-Mamba-2 within a Residual-in-Residual-Dense architecture for efficient OSWS inpainting. Experiments show that MMamba outperforms MambaIR (state-of-the-art) with an RMSE of 0.5481 m/s and an SSIM of 0.9820, significantly reducing RMSE by 21.10% over Kriging and 8.22% over MambaIR in high-winds (>15 m/s). We further introduce MMamba-L, a lightweight 0.22M-parameter variant suitable for resource-limited devices. These contributions make MMamba and MWSID powerful tools for OSWS inpainting, benefiting extreme weather prediction and oceanographic research. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

23 pages, 4363 KB  
Article
Hybrid SDE-Neural Networks for Interpretable Wind Power Prediction Using SCADA Data
by Mehrdad Ghadiri and Luca Di Persio
Electricity 2025, 6(3), 48; https://doi.org/10.3390/electricity6030048 - 1 Sep 2025
Viewed by 216
Abstract
Wind turbine power forecasting is crucial for optimising energy production, planning maintenance, and enhancing grid stability. This research focuses on predicting the output of a Senvion MM92 wind turbine at the Kelmarsh wind farm in the UK using SCADA data from 2020. Two [...] Read more.
Wind turbine power forecasting is crucial for optimising energy production, planning maintenance, and enhancing grid stability. This research focuses on predicting the output of a Senvion MM92 wind turbine at the Kelmarsh wind farm in the UK using SCADA data from 2020. Two approaches are explored: a hybrid model combining Stochastic Differential Equations (SDEs) with Neural Networks (NNs) and Deep Learning models, in particular, Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), and the Combination of Convolutional Neural Networks (CNNs) and LSTM. Notably, while SDE-NN models are well suited for predictions in cases where data patterns are chaotic and lack consistent trends, incorporating stochastic processes increases the complexity of learning within SDE models. Moreover, it is worth mentioning that while SDE-NNs cannot be classified as purely “white box” models, they are also not entirely “black box” like traditional Neural Networks. Instead, they occupy a middle ground, offering improved interpretability over pure NNs while still leveraging the power of Deep Learning. This balance is precious in fields such as wind power prediction, where accuracy and understanding of the underlying physical processes are essential. The evaluation of the results demonstrates the effectiveness of the SDE-NNs compared to traditional Deep Learning models for wind power prediction. The SDE-NNs achieve slightly better accuracy than other Deep Learning models, highlighting their potential as a powerful alternative. Full article
Show Figures

Figure 1

18 pages, 2579 KB  
Article
LSTM-Based Prediction of Solar Irradiance and Wind Speed for Renewable Energy Systems
by Ahmed A. Alguhi and Abdullah M. Al-Shaalan
Energies 2025, 18(17), 4594; https://doi.org/10.3390/en18174594 - 29 Aug 2025
Viewed by 345
Abstract
Renewable energy systems like solar and wind power are the main source of sustainable energy production; however, their intermittent nature produces challenges for grid integration, so they require realistic forecast models. This study developed a Long Short-Term Memory (LSTM) neural network model to [...] Read more.
Renewable energy systems like solar and wind power are the main source of sustainable energy production; however, their intermittent nature produces challenges for grid integration, so they require realistic forecast models. This study developed a Long Short-Term Memory (LSTM) neural network model to predict solar irradiance and wind power over a 24 h horizon using a 240 h (10-day) dataset. The dataset, being hourly measurements of solar irradiance (W/m2) and wind speed (m/s), was divided and normalized into 193 sequences of 24 h each, with 80% for training and 20% for validation. Two LSTM models, each consisting of 100 hidden units, were trained using the Adam optimizer to predict the next 24 h for each of the variables using forget, input, and output gates to capture temporal dependencies. The results have shown that the model accurately forecasted solar irradiance with a clear day–night cycle, while forecasts of wind speed revealed higher variability, although the PV system was better than the wind system due to low wind speeds. The results reveal that the LSTM model can effectively predict renewable energy output by predicting the wind speed and Solar Irradiance, which are the main parameters that control the output power of wind turbines and PV power, respectively. Full article
Show Figures

Figure 1

25 pages, 9041 KB  
Article
A Novel Wind Turbine Clutter Detection Algorithm for Weather Radar Data
by Fugui Zhang, Yao Gao, Qiangyu Zeng, Zhicheng Ren, Hao Wang and Wanjun Chen
Electronics 2025, 14(17), 3467; https://doi.org/10.3390/electronics14173467 - 29 Aug 2025
Viewed by 225
Abstract
Wind turbine radar echoes exhibit significant scattering power and Doppler spectrum broadening effects, which can interfere with the detection of meteorological targets and subsequently impact weather prediction and disaster warning decisions. In operational weather radar applications, the influence of wind farm on radar [...] Read more.
Wind turbine radar echoes exhibit significant scattering power and Doppler spectrum broadening effects, which can interfere with the detection of meteorological targets and subsequently impact weather prediction and disaster warning decisions. In operational weather radar applications, the influence of wind farm on radar observations must be fully considered by meteorological departments and related institutions. In this paper, a Wind Turbine Clutter Classification Algorithm based on Random Forest (WTCDA-RF) classification is proposed. The level-II radar data is processed in blocks, and the spatial position invariance of wind farm clutter is leveraged for feature extraction. Samples are labeled based on position information, and valid samples are screened and saved to construct a vector sample set of wind farm clutter. Through training and optimization, the proposed WTCDA-RF model achieves an ACC of 90.92%, a PRE of 89.37%, a POD of 92.89%, and an F1-score of 91.10%, with a CSI of 83.65% and a FAR of only 10.63%. This not only enhances the accuracy of weather forecasts and ensures the reliability of radar data but also provides operational conditions for subsequent clutter removal, improves disaster warning capabilities, and ensures timely and accurate warning information under extreme weather conditions. Full article
Show Figures

Figure 1

23 pages, 6095 KB  
Article
A Two-Stage Cooperative Scheduling Model for Virtual Power Plants Accounting for Price Stochastic Perturbations
by Yan Lu, Jian Zhang, Bo Lu and Zhongfu Tan
Energies 2025, 18(17), 4586; https://doi.org/10.3390/en18174586 - 29 Aug 2025
Viewed by 218
Abstract
With the increasing integration of renewable energy, virtual power plants (VPPs) have emerged as key market participants by aggregating distributed energy resources. However, their involvement in electricity markets is increasingly challenged by two major uncertainties: price volatility and the intermittency of renewable generation. [...] Read more.
With the increasing integration of renewable energy, virtual power plants (VPPs) have emerged as key market participants by aggregating distributed energy resources. However, their involvement in electricity markets is increasingly challenged by two major uncertainties: price volatility and the intermittency of renewable generation. This study presents the first application of Information Gap Decision Theory (IGDT) within a two-stage cooperative scheduling framework for VPPs. A novel bidding strategy model is proposed, incorporating both robust and opportunistic optimization methods to explicitly account for decision-making behaviors under different risk preferences. In the day-ahead stage, a risk-responsive bidding mechanism is designed to address price uncertainty. In the real-time stage, the coordinated dispatch of micro gas turbines, energy storage systems, and flexible loads is employed to minimize adjustment costs arising from wind and solar forecast deviations. A case study using spot market data from Shandong Province, China, shows that the proposed model not only achieves an effective balance between risk and return but also significantly improves renewable energy integration and system flexibility. This work introduces a new modeling paradigm and a practical optimization tool for precision trading under uncertainty, offering both theoretical and methodological contributions to the coordinated operation of flexible resources and the design of electricity market mechanisms. Full article
Show Figures

Figure 1

38 pages, 12663 KB  
Article
A Transformer-Based Hybrid Neural Network Integrating Multiresolution Turbulence Intensity and Independent Modeling of Multiple Meteorological Features for Wind Speed Forecasting
by Hongbin Liu, Ziyan Wang, Yizhuo Liu, Jie Zhou, Chen Chen, Haoyuan Ma, Xi Huang, Hongqing Wang and Xiaodong Ji
Energies 2025, 18(17), 4571; https://doi.org/10.3390/en18174571 - 28 Aug 2025
Viewed by 408
Abstract
Aiming at the nonlinear, nonstationary, and multiscale fluctuation characteristics of wind speed series, this study proposes a wind speed-forecasting framework that integrates multi-resolution turbulence intensity features and a Transformer-based hybrid neural network. Firstly, based on multi-resolution turbulence intensity and stationary wavelet transform (SWT), [...] Read more.
Aiming at the nonlinear, nonstationary, and multiscale fluctuation characteristics of wind speed series, this study proposes a wind speed-forecasting framework that integrates multi-resolution turbulence intensity features and a Transformer-based hybrid neural network. Firstly, based on multi-resolution turbulence intensity and stationary wavelet transform (SWT), the original wind speed series is decomposed into eight pairs of mean wind speeds and turbulence intensities at different time scales, which are then modeled and predicted in parallel using eight independent LSTM sub-models. Unlike traditional methods treating meteorological variables such as air pressure, temperature, and wind direction as static input features, WaveNet, LSTM, and TCN neural networks are innovatively adopted here to independently model and forecast these meteorological series, thoroughly capturing their dynamic influences on wind speed. Finally, a Transformer-based self-attention mechanism dynamically integrates multiple outputs from the four sub-models to generate final wind speed predictions. Experimental results averaged over three datasets demonstrate superior accuracy and robustness, with MAE, RMSE, MAPE, and R2 values around 0.65, 0.87, 23.24%, and 0.92, respectively, for a 6 h forecast horizon. Moreover, the proposed framework consistently outperforms all baselines across four categories of comparative experiments, showing strong potential for practical applications in wind power dispatching. Full article
Show Figures

Figure 1

22 pages, 1015 KB  
Article
Economic Optimal Scheduling of Virtual Power Plants with Vehicle-to-Grid Integration Considering Uncertainty
by Lei Gao and Wenfei Yi
Processes 2025, 13(9), 2755; https://doi.org/10.3390/pr13092755 - 28 Aug 2025
Viewed by 231
Abstract
To mitigate the risks posed by uncertainties in renewable energy output and Electric Vehicle (EV) travel patterns on the scheduling of Virtual Power Plants (VPPs), this paper proposes an optimal scheduling model for a VPP incorporating EVs based on Information Gap Decision Theory [...] Read more.
To mitigate the risks posed by uncertainties in renewable energy output and Electric Vehicle (EV) travel patterns on the scheduling of Virtual Power Plants (VPPs), this paper proposes an optimal scheduling model for a VPP incorporating EVs based on Information Gap Decision Theory (IGDT). First, a Monte Carlo load forecasting model is established based on the behavioral characteristics of EV users, and a Sigmoid function is introduced to quantify the dynamic relationship between user response willingness and VPP incentive prices. Second, within the VPP framework, an economic optimal scheduling model considering multi-source collaboration is developed by integrating wind power, photovoltaics, gas turbines, energy storage systems, and EV clusters with Vehicle-to-Grid (V2G) capabilities. Subsequently, to address the uncertain parameters within the model, IGDT is employed to construct a bi-level decision-making mechanism that encompasses both risk-averse and opportunity-seeking strategies. Finally, a case study on a VPP is conducted to verify the correctness and effectiveness of the proposed model and algorithm. The results demonstrate that the proposed method can effectively achieve a 7.94% reduction in the VPP’s comprehensive dispatch cost under typical scenarios, exhibiting superiority in terms of both economy and stability. Full article
27 pages, 9788 KB  
Article
Optimized Sensor Data Preprocessing Using Parameter-Transfer Learning for Wind Turbine Power Curve Modeling
by Pedro Martín-Calzada, Pedro Martín Sánchez, Francisco Javier Rodríguez-Sánchez, Carlos Santos-Pérez and Jorge Ballesteros
Sensors 2025, 25(17), 5329; https://doi.org/10.3390/s25175329 - 27 Aug 2025
Viewed by 470
Abstract
Wind turbine power curve modeling is essential for wind power forecasting, turbine performance monitoring, and predictive maintenance. However, SCADA data often contain anomalies (e.g., curtailment, sensor faults), degrading the accuracy of power curve predictions. This paper presents a parameter-transfer learning strategy within a [...] Read more.
Wind turbine power curve modeling is essential for wind power forecasting, turbine performance monitoring, and predictive maintenance. However, SCADA data often contain anomalies (e.g., curtailment, sensor faults), degrading the accuracy of power curve predictions. This paper presents a parameter-transfer learning strategy within a preprocessing and modeling framework that jointly optimizes anomaly detection (iForest, LOF, DBSCAN) and WTPC regressors (MLP, RF, GP) via a multi-metric objective adaptable to specific modeling requirements. In the source domain, hyperparameters are explored with randomized search, and in the target domain, transferred settings are refined with Bayesian optimization. Applied to real SCADA from different locations and turbine models, the approach achieves a 90% reduction in optimization iterations and consistently improves target domain performance according to the objective, with no observed loss when comparable source and target turbines differ in site or rated power. Gains are larger for more similar source–target pairs. Overall, the approach yields a practical model-agnostic pipeline that accelerates preprocessing and modeling while preserving or improving fit, particularly for newly installed turbines with limited data. Full article
(This article belongs to the Special Issue Anomaly Detection and Fault Diagnosis in Sensor Networks)
Show Figures

Graphical abstract

23 pages, 2967 KB  
Article
Ultra-Short-Term Wind Power Prediction Based on Spatiotemporal Contrastive Learning
by Jie Xu, Tie Chen, Jiaxin Yuan, Youyuan Fan, Liping Li and Xinyu Gong
Electronics 2025, 14(17), 3373; https://doi.org/10.3390/electronics14173373 - 25 Aug 2025
Viewed by 398
Abstract
With the accelerating global energy transition, wind power has become a core pillar of renewable energy systems. However, its inherent intermittency and volatility pose significant challenges to the safe, stable, and economical operation of power grids—making ultra-short-term wind power prediction a critical technical [...] Read more.
With the accelerating global energy transition, wind power has become a core pillar of renewable energy systems. However, its inherent intermittency and volatility pose significant challenges to the safe, stable, and economical operation of power grids—making ultra-short-term wind power prediction a critical technical link in optimizing grid scheduling and promoting large-scale wind power integration. Current forecasting techniques are plagued by problems like the inadequate representation of features, the poor separation of features, and the challenging clarity of deep learning models. This study introduces a method for the prediction of wind energy using spatiotemporal contrastive learning, employing seasonal trend decomposition to encapsulate the diverse characteristics of time series. A contrastive learning framework and a feature disentanglement loss function are employed to effectively decouple spatiotemporal features. Data on geographical positions are integrated to simulate spatial correlations, and a convolutional network of spatiotemporal graphs, integrated with a multi-head attention system, is crafted to improve the clarity. The proposed method is validated using operational data from two actual wind farms in Northwestern China. The research indicates that, compared with typical baselines (e.g., STGCN), this method reduces the RMSE by up to 38.47% and the MAE by up to 44.71% for ultra-short-term wind power prediction, markedly enhancing the prediction precision and offering a more efficient way to forecast wind power. Full article
Show Figures

Figure 1

19 pages, 2459 KB  
Article
Temporal-Alignment Cluster Identification and Relevance-Driven Feature Refinement for Ultra-Short-Term Wind Power Forecasting
by Yan Yan and Yan Zhou
Energies 2025, 18(17), 4477; https://doi.org/10.3390/en18174477 - 22 Aug 2025
Viewed by 491
Abstract
Ultra-short-term wind power forecasting is challenged by high volatility and complex temporal patterns, with traditional single-model approaches often failing to provide stable and accurate predictions under diverse operational scenarios. To address this issue, a framework based on the TCN-ELM hybrid model with temporal [...] Read more.
Ultra-short-term wind power forecasting is challenged by high volatility and complex temporal patterns, with traditional single-model approaches often failing to provide stable and accurate predictions under diverse operational scenarios. To address this issue, a framework based on the TCN-ELM hybrid model with temporal alignment clustering and feature refinement is proposed for ultra-short-term wind power forecasting. First, dynamic time warping (DTW)–K-means is applied to cluster historical power curves in the temporal alignment space, identifying consistent operational patterns and providing prior information for subsequent predictions. Then, a correlation-driven feature refinement method is introduced to weight and select the most representative meteorological and power sequence features within each cluster, optimizing the feature set for improved prediction accuracy. Next, a TCN-ELM hybrid model is constructed, combining the advantages of temporal convolutional networks (TCNs) in capturing sequential features and an extreme learning machine (ELM) in efficient nonlinear modelling. This hybrid approach enhances forecasting performance through their synergistic capabilities. Traditional ultra-short-term forecasting often focuses solely on historical power as input, especially with a 15 min resolution, but this study emphasizes reducing the time scale of meteorological forecasts and power samples to within one hour, aiming to improve the reliability of the forecasting model in handling sudden meteorological changes within the ultra-short-term time horizon. To validate the proposed framework, comparisons are made with several benchmark models, including traditional TCN, ELM, and long short-term memory (LSTM) networks. Experimental results demonstrate that the proposed framework achieves higher prediction accuracy and better robustness across various operational modes, particularly under high-variability scenarios, out-performing conventional models like TCN and ELM. The method provides a reliable technical solution for ultra-short-term wind power forecasting, grid scheduling, and power system stability. Full article
Show Figures

Figure 1

21 pages, 1242 KB  
Article
Smart Monitoring and Management of Local Electricity Systems with Renewable Energy Sources
by Olexandr Kyrylenko, Serhii Denysiuk, Halyna Bielokha, Artur Dyczko, Beniamin Stecuła and Yuliya Pazynich
Energies 2025, 18(16), 4434; https://doi.org/10.3390/en18164434 - 20 Aug 2025
Viewed by 587
Abstract
Smart monitoring of local electricity systems (LESs) with sources based on renewable energy resources (RESs) from the point of view of the requirements of the functions of an intelligent system are hardware and software systems that can solve the tasks of both analysis [...] Read more.
Smart monitoring of local electricity systems (LESs) with sources based on renewable energy resources (RESs) from the point of view of the requirements of the functions of an intelligent system are hardware and software systems that can solve the tasks of both analysis (optimization) and synthesis (design, planning, control). The article considers the following: a functional scheme of smart monitoring of LESs, describing its main components and scope of application; an assessment of the state of the processes and the state of the equipment of generators and loads; dynamic pricing and a dynamic assessment of the state of use of primary fuel and/or current costs of generators; economic efficiency of generator operation and loads; an assessment of environmental acceptability, in particular, the volume of CO2 emissions; provides demand-side management, managing maximum energy consumption; a forecast of system development; an assessment of mutual flows of electricity; system resistance to disturbances; a forecast of metrological indicators, potential opportunities for generating RESs (wind power plants, solar power plants, etc.); an assessment of current costs; the state of electromagnetic compatibility of system elements and operation of electricity storage devices; and ensures work on local electricity markets. The application of smart monitoring in the formation of tariffs on local energy markets for transactive energy systems is shown by conducting a combined comprehensive assessment of the energy produced by each individual power source with graphs of the dependence of costs on the generated power. Algorithms for the comprehensive assessment of the cost of electricity production in a transactive system for calculating planned costs are developed, and the calculation of the cost of production per 1 kW is also presented. A visualization of the results of applying this algorithm is presented. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

47 pages, 4608 KB  
Article
Adaptive Differentiated Parrot Optimization: A Multi-Strategy Enhanced Algorithm for Global Optimization with Wind Power Forecasting Applications
by Guanjun Lin, Mahmoud Abdel-salam, Gang Hu and Heming Jia
Biomimetics 2025, 10(8), 542; https://doi.org/10.3390/biomimetics10080542 - 18 Aug 2025
Viewed by 354
Abstract
The Parrot Optimization Algorithm (PO) represents a contemporary nature-inspired metaheuristic technique formulated through observations of Pyrrhura Molinae parrot behavioral patterns. PO exhibits effective optimization capabilities by achieving equilibrium between exploration and exploitation phases through mimicking foraging behaviors and social interactions. Nevertheless, during iterative [...] Read more.
The Parrot Optimization Algorithm (PO) represents a contemporary nature-inspired metaheuristic technique formulated through observations of Pyrrhura Molinae parrot behavioral patterns. PO exhibits effective optimization capabilities by achieving equilibrium between exploration and exploitation phases through mimicking foraging behaviors and social interactions. Nevertheless, during iterative progression, the algorithm encounters significant obstacles in preserving population diversity and experiences declining search effectiveness, resulting in early convergence and diminished capacity to identify optimal solutions within intricate optimization landscapes. To overcome these constraints, this work presents the Adaptive Differentiated Parrot Optimization Algorithm (ADPO), which constitutes a substantial enhancement over baseline PO through the implementation of three innovative mechanisms: Mean Differential Variation (MDV), Dimension Learning-Based Hunting (DLH), and Enhanced Adaptive Mutualism (EAM). The MDV mechanism strengthens the exploration capabilities by implementing dual-phase mutation strategies that facilitate extensive search during initial iterations while promoting intensive exploitation near promising solutions during later phases. Additionally, the DLH mechanism prevents premature convergence by enabling dimension-wise adaptive learning from spatial neighbors, expanding search diversity while maintaining coordinated optimization behavior. Finally, the EAM mechanism replaces rigid cooperation with fitness-guided interactions using flexible reference solutions, ensuring optimal balance between intensification and diversification throughout the optimization process. Collectively, these mechanisms significantly improve the algorithm’s exploration, exploitation, and convergence capabilities. Furthermore, ADPO’s effectiveness was comprehensively assessed using benchmark functions from the CEC2017 and CEC2022 suites, comparing performance against 12 advanced algorithms. The results demonstrate ADPO’s exceptional convergence speed, search efficiency, and solution precision. Additionally, ADPO was applied to wind power forecasting through integration with Long Short-Term Memory (LSTM) networks, achieving remarkable improvements over conventional approaches in real-world renewable energy prediction scenarios. Specifically, ADPO outperformed competing algorithms across multiple evaluation metrics, achieving average R2 values of 0.9726 in testing phases with exceptional prediction stability. Moreover, ADPO obtained superior Friedman rankings across all comparative evaluations, with values ranging from 1.42 to 2.78, demonstrating clear superiority over classical, contemporary, and recent algorithms. These outcomes validate the proposed enhancements and establish ADPO’s robustness and effectiveness in addressing complex optimization challenges. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

20 pages, 3247 KB  
Article
Ultra-Short-Term Wind Power Prediction with Multi-Scale Feature Extraction Under IVMD
by Jian Sun, Huakun Wei and Chuangxin Chen
Processes 2025, 13(8), 2606; https://doi.org/10.3390/pr13082606 - 18 Aug 2025
Viewed by 449
Abstract
To mitigate wind power intermittency effects on forecasting accuracy, this study proposes a novel ultra-short-term prediction method based on improved variational mode decomposition (IVMD) and multi-scale feature extraction. First, the maximum information coefficient identified meteorological features strongly correlated with wind power, such as [...] Read more.
To mitigate wind power intermittency effects on forecasting accuracy, this study proposes a novel ultra-short-term prediction method based on improved variational mode decomposition (IVMD) and multi-scale feature extraction. First, the maximum information coefficient identified meteorological features strongly correlated with wind power, such as wind speed and wind direction, thereby reducing model input dimensionality. Permutation entropy then served as the fitness function for the sparrow search algorithm (SSA), enabling adaptive IVMD parameter optimization for effective decomposition of non-stationary sequences. The resulting intrinsic mode functions and key meteorological features were input into a prediction model integrating a temporal convolutional network (TCN) and bidirectional gated recurrent unit (BiGRU) to capture global trends and local fluctuations. The SSA was reapplied to optimize TCN-BiGRU hyperparameters, enhancing adaptability. Simulations using operational data from a Xinjiang wind farm demonstrated that the proposed method achieved a coefficient of determination (R2) of 0.996, representing an absolute increase of 0.060 over the XGBoost benchmark (R2 = 0.936). This confirms significant enhancement of ultra-short-term forecasting accuracy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 5818 KB  
Article
Scenario-Based Stochastic Optimization for Renewable Integration Under Forecast Uncertainty: A South African Power System Case Study
by Martins Osifeko and Josiah Munda
Processes 2025, 13(8), 2560; https://doi.org/10.3390/pr13082560 - 13 Aug 2025
Viewed by 624
Abstract
South Africa’s transition to a renewable-powered grid faces critical challenges due to the inherent variability of wind and solar generation as well as the need for economically viable and reliable dispatch strategies. This study proposes a scenario-based stochastic optimization framework that integrates machine [...] Read more.
South Africa’s transition to a renewable-powered grid faces critical challenges due to the inherent variability of wind and solar generation as well as the need for economically viable and reliable dispatch strategies. This study proposes a scenario-based stochastic optimization framework that integrates machine learning forecasting and uncertainty modeling to enhance operational decision making. A hybrid Long Short-Term Memory–XGBoost model is employed to forecast wind, photovoltaic (PV) power, concentrated solar power (CSP), and electricity demand, with Monte Carlo dropout and quantile regression used for uncertainty quantification. Scenarios are generated using appropriate probability distributions and are reduced via Temporal-Aware K-Means Scenario Reduction for tractability. A two-stage stochastic program then optimizes power dispatch under uncertainty, benchmarked against Deterministic, Rule-Based, and Perfect Information models. Simulation results over 7 days using five years of real-world South African energy data show that the stochastic model strikes a favorable balance between cost and reliability. It incurs a total system cost of ZAR 1.748 billion, with 1625 MWh of load shedding and 1283 MWh of curtailment, significantly outperforming the deterministic model (ZAR 1.763 billion; 3538 MWh load shedding; 59 MWh curtailment) and the rule-based model (ZAR 1.760 billion, 1.809 MWh load shedding; 1475 MWh curtailment). The proposed stochastic framework demonstrates strong potential for improving renewable integration, reducing system penalties, and enhancing grid resilience in the face of forecast uncertainty. Full article
Show Figures

Figure 1

Back to TopTop