Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = windowed-color histogram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1907 KB  
Article
Detection of Neonatal Calf Diarrhea Using Suckle Pressure and Machine Learning
by Beibei Xu, Claira R. Seely, Tapomayukh Bhattacharjee and Taika von Konigslow
Agriculture 2025, 15(17), 1831; https://doi.org/10.3390/agriculture15171831 - 28 Aug 2025
Viewed by 599
Abstract
Neonatal calf diarrhea (NCD) remains one of the most prevalent and economically burdensome health challenges in preweaned calves, leading to compromised growth, increased morbidity, and high mortality rates worldwide. While traditional methods such as physical examination and clinical health scoring are widely used, [...] Read more.
Neonatal calf diarrhea (NCD) remains one of the most prevalent and economically burdensome health challenges in preweaned calves, leading to compromised growth, increased morbidity, and high mortality rates worldwide. While traditional methods such as physical examination and clinical health scoring are widely used, they often require trained personnel, are resource-intensive, and are prone to subjectivity, which limits their scalability in large dairy operations. This observational cohort study investigated the feasibility of using suckle pressure measurement combined with machine learning (ML) techniques for NCD detection. A total of 51 female Holstein calves on a commercial dairy farm were enrolled at birth and health scored daily from 1 to 21 days of age. Suckle pressures were measured at 1, 3, 5, 7, 10, 14, and 21 days, as well as daily following NCD diagnosis until fecal consistency returned to normal. Pressure measurements were captured using impression film-wrapped nipples, producing 349 images, of which 54 were from calves diagnosed with NCD. Image features, including pixel density, color saturation, entropy, and histogram-based features, were extracted for analysis. Multiple ML classifiers—Support Vector Machine, K-Nearest Neighbors, Random Forest, Gradient Boosting, and Easy Ensemble (EE)—were applied to detect NCD status based on image features. The EE classifier achieved the best detection performance, with an accuracy of 0.90, precision of 0.64, and recall of 0.82, effectively handling data imbalance. Notably, the results also demonstrated that NCD onset could be predicted up to one day prior to clinical manifestation by training classifiers on pre-symptomatic suckle pressure data and testing on post-onset data. The EE classifier also outperformed other models in this early prediction window, with an accuracy of 0.74, precision of 0.67, and recall of 0.70. The results of our preliminary study suggest that suckle pressure may offer a novel, non-invasive approach for precision health monitoring in dairy systems, enabling timely intervention to reduce disease severity, improve calf health, and minimize economic losses. Full article
(This article belongs to the Special Issue Computer Vision Analysis Applied to Farm Animals)
Show Figures

Figure 1

13 pages, 7413 KB  
Article
A Study on Enhancing the Visual Fidelity of Aviation Simulators Using WGAN-GP for Remote Sensing Image Color Correction
by Chanho Lee, Hyukjin Kwon, Hanseon Choi, Jonggeun Choi, Ilkyun Lee, Byungkyoo Kim, Jisoo Jang and Dongkyoo Shin
Appl. Sci. 2024, 14(20), 9227; https://doi.org/10.3390/app14209227 - 11 Oct 2024
Cited by 1 | Viewed by 1686
Abstract
When implementing outside-the-window (OTW) visuals in aviation tactical simulators, maintaining terrain image color consistency is critical for enhancing pilot immersion and focus. However, due to various environmental factors, inconsistent image colors in terrain can cause visual confusion and diminish realism. To address these [...] Read more.
When implementing outside-the-window (OTW) visuals in aviation tactical simulators, maintaining terrain image color consistency is critical for enhancing pilot immersion and focus. However, due to various environmental factors, inconsistent image colors in terrain can cause visual confusion and diminish realism. To address these issues, a color correction technique based on a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) is proposed. The proposed WGAN-GP model utilizes multi-scale feature extraction and Wasserstein distance to effectively measure and adjust the color distribution difference between the input image and the reference image. This approach can preserve the texture and structural characteristics of the image while maintaining color consistency. In particular, by converting Bands 2, 3, and 4 of the BigEarthNet-S2 dataset into RGB images as the reference image and preprocessing the reference image to serve as the input image, it is demonstrated that the proposed WGAN-GP model can handle large-scale remote sensing images containing various lighting conditions and color differences. The experimental results showed that the proposed WGAN-GP model outperformed traditional methods, such as histogram matching and color transfer, and was effective in reflecting the style of the reference image to the target image while maintaining the structural elements of the target image during the training process. Quantitative analysis demonstrated that the mid-stage model achieved a PSNR of 28.93 dB and an SSIM of 0.7116, which significantly outperforms traditional methods. Furthermore, the LPIPS score was reduced to 0.3978, indicating improved perceptual similarity. This approach can contribute to improving the visual elements of the simulator to enhance pilot immersion and has the potential to significantly reduce time and costs compared to the manual methods currently used by the Republic of Korea Air Force. Full article
(This article belongs to the Special Issue Applications of Machine Learning Algorithms in Remote Sensing)
Show Figures

Figure 1

22 pages, 30449 KB  
Article
A Method for Local Contrast Enhancement of Endoscopic Images Based on Color Tensor Transformation into a Matrix of Color Vectors’ Modules Using a Sliding Window
by Roumen Kountchev, Alexander Bekiarski, Rumen Mironov and Snezhana Pleshkova
Symmetry 2022, 14(12), 2582; https://doi.org/10.3390/sym14122582 - 6 Dec 2022
Cited by 1 | Viewed by 2219
Abstract
A new method aimed at endoscopic color images’ local contrast enhancement is proposed, based on local sliding histogram equalization with adaptive threshold limitation, color distortions correction, and image brightness preservation. For this, the original RGB image, represented as a tensor of size M [...] Read more.
A new method aimed at endoscopic color images’ local contrast enhancement is proposed, based on local sliding histogram equalization with adaptive threshold limitation, color distortions correction, and image brightness preservation. For this, the original RGB image, represented as a tensor of size M × N × 3, is transformed into a matrix of size M × N, composed by the color vectors’ modules. As a result of local contrast enhancement, the obtained color vectors are symmetrical in respect of the input ones, because they satisfy the requirement for invariance after rotation. To enhance the local contrast, recursive local histogram equalization with adaptive thresholding is applied to each matrix element. This threshold divides the histogram into two regions of equal areas. A new metric for local contrast enhancement evaluation based on the mean square difference entropy is proposed. The presented new method is characterized by low computational complexity, due to the lack of direct and inverse color conversion and the possibility for adaptive local contrast enhancement, which is essential for accurate medical diagnosis based on endoscopic images analysis. In addition, the presented method performs both the correction of color distortions and the brightness preservation of each pixel. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

12 pages, 634 KB  
Article
Time Classification Algorithm Based on Windowed-Color Histogram Matching
by Hye-Jin Park, Jung-In Jang and Byung-Gyu Kim
Appl. Sci. 2021, 11(24), 11997; https://doi.org/10.3390/app112411997 - 16 Dec 2021
Cited by 2 | Viewed by 3305
Abstract
A web-based search system recommends and gives results such as customized image or video contents using information such as user interests, search time, and place. Time information extracted from images can be used as a important metadata in the web search system. We [...] Read more.
A web-based search system recommends and gives results such as customized image or video contents using information such as user interests, search time, and place. Time information extracted from images can be used as a important metadata in the web search system. We present an efficient algorithm to classify time period into day, dawn, and night when the input is a single image with a sky region. We employ the Mask R-CNN to extract a sky region. Based on the extracted sky region, reference color histograms are generated, which can be considered as the ground-truth. To compare the histograms effectively, we design the windowed-color histograms (for RGB bands) to compare each time period from the sky region of the reference data with one of the input images. Also, we use a weighting approach to reflect a more separable feature on the windowed-color histogram. With the proposed windowed-color histogram, we verify about 91% of the recognition accuracy in the test data. Compared with the existing deep neural network models, we verify that the proposed algorithm achieves better performance in the test dataset. Full article
(This article belongs to the Topic Applied Computer Vision and Pattern Recognition)
Show Figures

Figure 1

25 pages, 27937 KB  
Article
Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study
by Francisco Carreño Conde and María De Mata Muñoz
Water 2019, 11(12), 2454; https://doi.org/10.3390/w11122454 - 22 Nov 2019
Cited by 109 | Viewed by 16519
Abstract
Flooding is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activities, hydromorphological alterations on ecosystem services, and human health. The mitigation of the risks associated with flooding requires a certain management of flood zones, sustained by data and [...] Read more.
Flooding is the most widespread hydrological hazard worldwide that affects water management, nature protection, economic activities, hydromorphological alterations on ecosystem services, and human health. The mitigation of the risks associated with flooding requires a certain management of flood zones, sustained by data and information about the events with the help of flood maps with sufficient temporal and spatial resolution. This paper presents the potential use of the Sentinel-1 SAR (Synthetic Aperture Radar) images as a powerful tool for flood mapping applied in the event of extraordinary floods that occurred during the month of April 2018 in the Ebro (Spain). More specifically, in this study, we describe accurate and robust processing that allows real-time flood extension maps to be obtained, which is essential for risk mitigation. Evaluating the different Sentinel-1 parameters, our analysis shows that the best results on the final flood mapping for this study area were obtained using VH (Vertical-Horizontal) polarization configuration and Lee filtering 7 × 7 window sizes. Two methods were applied to flood maps from Sentinel-1 SAR images: (1) RGB (Red, Green, Blue color model) composition based on the differences between the pre- and post-event images; and (2) the calibration threshold technique or binarization based on histogram backscatter values. When comparing our flood maps with the flood areas digitalized from vertical aerial photographs, done by the Hydrological Planning Office of the Ebro Hydrographic Confederation, the results were coincident. The result of the flooding map obtained with the RADAR (Radio Detection and Ranging) image were compared with the layers with different return periods (10, 50, 100, and 500 years) for a selected zone of the study area of SNCZI (National Flood Zone Mapping System in Spain). It was found that the images are consistent and correspond to a flood between 10 and 50 years of return. In view of the results obtained, the usefulness of Sentinel-1 images as baseline data for the improvement of the methodological guide is appreciated, and should be used as a new source of input, calibration, and validation for hydrological models to improve the accuracy of flood risk maps. Full article
(This article belongs to the Special Issue Flood Risk Assessments: Applications and Uncertainties)
Show Figures

Figure 1

21 pages, 25546 KB  
Article
Research on a Face Real-time Tracking Algorithm Based on Particle Filter Multi-Feature Fusion
by Tao Wang, Wen Wang, Hui Liu and Tianping Li
Sensors 2019, 19(5), 1245; https://doi.org/10.3390/s19051245 - 12 Mar 2019
Cited by 9 | Viewed by 4247
Abstract
With the revolutionary development of cloud computing and internet of things, the integration and utilization of “big data” resources is a hot topic of the artificial intelligence research. Face recognition technology information has the advantages of being non-replicable, non-stealing, simple and intuitive. Video [...] Read more.
With the revolutionary development of cloud computing and internet of things, the integration and utilization of “big data” resources is a hot topic of the artificial intelligence research. Face recognition technology information has the advantages of being non-replicable, non-stealing, simple and intuitive. Video face tracking in the context of big data has become an important research hotspot in the field of information security. In this paper, a multi-feature fusion adaptive adjustment target tracking window and an adaptive update template particle filter tracking framework algorithm are proposed. Firstly, the skin color and edge features of the face are extracted in the video sequence. The weighted color histogram are extracted which describes the face features. Then we use the integral histogram method to simplify the histogram calculation of the particles. Finally, according to the change of the average distance, the tracking window is adjusted to accurately track the tracking object. At the same time, the algorithm can adaptively update the tracking template which improves the accuracy and accuracy of the tracking. The experimental results show that the proposed method improves the tracking effect and has strong robustness in complex backgrounds such as skin color, illumination changes and face occlusion. Full article
Show Figures

Figure 1

21 pages, 8412 KB  
Article
Improved Target Signal Source Tracking and Extraction Method Based on Outdoor Visible Light Communication Using a Cam-Shift Algorithm and Kalman Filter
by Mouxiao Huang, Weipeng Guan, Zhibo Fan, Zenghong Chen, Jingyi Li and Bangdong Chen
Sensors 2018, 18(12), 4173; https://doi.org/10.3390/s18124173 - 28 Nov 2018
Cited by 8 | Viewed by 3882
Abstract
An improved Cam-Shift algorithm with a Kalman filter applied to image-sensor based on outdoor visible light communication (OVLC) is presented in this paper. The proposed optimized tracking algorithm is used to track and extract the region of the target signal source Light Emitting [...] Read more.
An improved Cam-Shift algorithm with a Kalman filter applied to image-sensor based on outdoor visible light communication (OVLC) is presented in this paper. The proposed optimized tracking algorithm is used to track and extract the region of the target signal source Light Emitting Diode (LED) that carries modulated information for data transmission. Extracting the target signal source LED area is the premise of an image-sensor-based VLC system, especially in outdoor dynamic scenes. However, most of the existing VLC studies focus on data transmission rate, visible light positioning, etc. While the actual first step of realizing communication is usually ignored in the field of VLC, especially when the transmitter (signal source LED) or the receiver (image sensor) is moving in a more complex outdoor environment. Therefore, an improved tracking algorithm is proposed in this paper, aiming at solving the problem of extracting the region of the target signal source LED accurately in dynamic scenes with different interferences so as to promote the feasibility of VLC applications in outdoor scenes. The proposed algorithm considers color characteristics and special distribution characteristics of the moving target at the same time. The image is converted to a color probability distribution map based on the color histogram of the target and adaptively adjusts the location and size of the search window based on the results obtained from the previous frame. Meanwhile, it predicts the motion state of the target in the next frame according to the position and velocity information of the current frame to enhance accuracy and robustness of tracking. Experimental results show that the tracking error of the proposed algorithm is 0.85 cm and the computational time of processing one frame is 0.042 s. Besides, results also show that the improved algorithm can track and extract the target signal source LED area completely and accurately in an environment of many interference factors. This study confirms that the proposed algorithm can be applied to an OVLC system with many interferences to realize the actual first step of communication in an image-sensor-based VLC system, laying foundations for subsequent data transmission and other steps. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

31 pages, 5742 KB  
Article
Probability Density Components Analysis: A New Approach to Treatment and Classification of SAR Images
by Osmar Abílio De Carvalho Júnior, Luz Marilda de Moraes Maciel, Ana Paula Ferreira De Carvalho, Renato Fontes Guimarães, Cristiano Rosa Silva, Roberto Arnaldo Trancoso Gomes and Nilton Correia Silva
Remote Sens. 2014, 6(4), 2989-3019; https://doi.org/10.3390/rs6042989 - 1 Apr 2014
Cited by 2 | Viewed by 9213
Abstract
Speckle noise (salt and pepper) is inherent to synthetic aperture radar (SAR), which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by [...] Read more.
Speckle noise (salt and pepper) is inherent to synthetic aperture radar (SAR), which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by a statistical distribution of the pixel intensities from a complex and heterogeneous spectral response. This paper proposes the Probability Density Components Analysis (PDCA), a new alternative that combines filtering and frequency histogram to improve the classification procedure for the single-channel synthetic aperture radar (SAR) images. This method was tested on L-band SAR data from the Advanced Land Observation System (ALOS) Phased-Array Synthetic-Aperture Radar (PALSAR) sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia State (municipality of Candeias do Jamari), containing forest and land use patterns. The proposed algorithm uses a moving window over the image, estimating the probability density curve in different image components. Therefore, a single input image generates an output with multi-components. Initially the multi-components should be treated by noise-reduction methods, such as maximum noise fraction (MNF) or noise-adjusted principal components (NAPCs). Both methods enable reducing noise as well as the ordering of multi-component data in terms of the image quality. In this paper, the NAPC applied to multi-components provided large reductions in the noise levels, and the color composites considering the first NAPC enhance the classification of different surface features. In the spectral classification, the Spectral Correlation Mapper and Minimum Distance were used. The results obtained presented as similar to the visual interpretation of optical images from TM-Landsat and Google Maps. Full article
Show Figures

Back to TopTop