Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (502)

Search Parameters:
Keywords = wireless optical communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6012 KB  
Article
Adaptive Spectrum Management in Optical WSNs for Real-Time Data Transmission and Fault Tolerance
by Mohammed Alwakeel
Mathematics 2025, 13(17), 2715; https://doi.org/10.3390/math13172715 - 23 Aug 2025
Viewed by 174
Abstract
Optical wireless sensor networks (OWSNs) offer promising capabilities for high-speed, energy-efficient communication, particularly in mission-critical environments such as industrial automation, healthcare monitoring, and smart buildings. However, dynamic spectrum management and fault tolerance remain key challenges in ensuring reliable and timely data transmission. This [...] Read more.
Optical wireless sensor networks (OWSNs) offer promising capabilities for high-speed, energy-efficient communication, particularly in mission-critical environments such as industrial automation, healthcare monitoring, and smart buildings. However, dynamic spectrum management and fault tolerance remain key challenges in ensuring reliable and timely data transmission. This paper proposes an adaptive spectrum management framework (ASMF) that addresses these challenges through a mathematically grounded and implementation-driven approach. The ASMF formulates the spectrum allocation problem as a constrained Markov decision process and leverages a dual-layer optimization strategy combining Lyapunov drift-plus-penalty for queue stability with deep reinforcement learning for adaptive long-term decision making. Additionally, ASMF integrates a hybrid fault-tolerant mechanism using LSTM-based link failure prediction and lightweight recovery logic, achieving up to 83% prediction accuracy. Experimental evaluations using real-world datasets from industrial, healthcare, and smart infrastructure scenarios demonstrate that ASMF reduces critical traffic latency by 37%, improves reliability by 42% under fault conditions, and enhances energy efficiency by 22.6% compared with state-of-the-art methods. The system also maintains a 99.94% packet delivery ratio for critical traffic and achieves 69.7% faster recovery after link failures. These results confirm the effectiveness of ASMF as a robust and scalable solution for adaptive spectrum management in dynamic, fault-prone OWSN environments. Full article
(This article belongs to the Special Issue Advances in Mobile Network and Intelligent Communication)
Show Figures

Figure 1

10 pages, 1397 KB  
Article
Encoding and Verification of Composite Vortex Beams with Spaced Orbital Angular Momentum
by Tianpeng Xu, Xinping Han, Xiaodie Wang, Sichen Lei, Pengfei Wu and Huiqin Wang
Photonics 2025, 12(8), 824; https://doi.org/10.3390/photonics12080824 - 19 Aug 2025
Viewed by 288
Abstract
A novel encoding method based on the orbital angular momentum (OAM) mode and radial mode of composite vortex beams is proposed. The superposition of two vortex beams generates 32 different types of composite vortex beams: one of them is a Laguerre–Gaussian (LG) beam [...] Read more.
A novel encoding method based on the orbital angular momentum (OAM) mode and radial mode of composite vortex beams is proposed. The superposition of two vortex beams generates 32 different types of composite vortex beams: one of them is a Laguerre–Gaussian (LG) beam with a fixed OAM mode and radial mode, and the other is a LG beam containing four radial modes (p = 0, 1, 2, 3) and eight OAM modes with the same interval (l = ±3, ±5, ±7, ±9). A specially designed composite fork-shaped grating (CFG) is utilized to generate the intensity array pattern, and the received composite vortex beam is diffracted into a Gaussian beam with the relevant coordinates. Based on the coordinates and the number of bright rings in the intensity pattern, the OAM modes and radial modes of the two vortex beams composing the superposition state are determined, and finally the received composite vortex beam is decoded into the initially propagated information sequence. The correctness and effectiveness of the proposed encoding are confirmed through the comparative analysis of the correlation of the optical fields at both the transmitter and receiver in the two scenarios of interval and non-interval encoding. The proposed encoding method can significantly improve the efficiency of information transmission and its resistance to interference, holding great potential for future applications in free-space optical communication. Full article
Show Figures

Figure 1

16 pages, 555 KB  
Article
Low-PAPR ASE-DMT Using Constellation Extension for Optical Wireless Communications
by Yue Wu, Yiding Li and Baolong Li
Sensors 2025, 25(16), 5109; https://doi.org/10.3390/s25165109 - 17 Aug 2025
Viewed by 375
Abstract
In the realm of optical wireless communication (OWC), augmented spectral efficiency discrete multitone (ASE-DMT) has been widely recognized as a promising modulation due to its outstanding spectral efficiency and high power efficiency. However, ASE-DMT exhibits an inherently high peak-to-average power ratio (PAPR), which [...] Read more.
In the realm of optical wireless communication (OWC), augmented spectral efficiency discrete multitone (ASE-DMT) has been widely recognized as a promising modulation due to its outstanding spectral efficiency and high power efficiency. However, ASE-DMT exhibits an inherently high peak-to-average power ratio (PAPR), which exacerbates error propagation and leads to a substantial transmission performance degradation in the successive interference cancellation (SIC) receiver of ASE-DMT. Therefore, a novel low-PAPR ASE-DMT scheme (LP-ASE-DMT) is proposed in the paper. Given the intricate multi-depth signal superposition of ASE-DMT, a progressive multi-level constellation extension algorithm is developed to effectively suppress the PAPR of the transmitted signal, while simultaneously achieving much lower computational complexity compared to conventional constellation extension schemes. Furthermore, a dedicated receiver architecture is designed for LP-ASE-DMT, in which a low-complexity modulo operation is employed to eliminate the impact of constellation extension without incurring significant additional receiver complexity. The effectiveness of the proposed LP-ASE-DMT scheme is validated through simulation, revealing a substantial mitigation of PAPR compared to its counterparts. This improvement notably strengthens the system’s robustness to nonlinear impairments. Consequently, LP-ASE-DMT enjoys superior performance across multiple metrics, including bit error rate (BER), power efficiency, and spectral efficiency. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

49 pages, 5199 KB  
Review
Recent Advances in C-Band High-Power and High-Speed Radio Frequency Photodiodes: Review, Theory and Applications
by Saeed Haydhah, Fabien Ferrero, Xiupu Zhang and Ahmed A. Kishk
Photonics 2025, 12(8), 820; https://doi.org/10.3390/photonics12080820 - 17 Aug 2025
Viewed by 289
Abstract
A review of the recent research work on high-power and high-speed (HPHS) Ge-on-Si photodiode design is presented, using Silicon Photonics (SiPh) technology, suitable for Radio-over-Fiber base station schemes. The Photodiode (PD) principle of operation, its structure for high RF photogenerated power, and the [...] Read more.
A review of the recent research work on high-power and high-speed (HPHS) Ge-on-Si photodiode design is presented, using Silicon Photonics (SiPh) technology, suitable for Radio-over-Fiber base station schemes. The Photodiode (PD) principle of operation, its structure for high RF photogenerated power, and the achieved PD wide bandwidth are presented. Then, the PD equivalent circuit models are introduced to obtain the PD S-parameters and operating bandwidth, such that efficient power coupling to mmWave loads is realized. Then, the PD theoretical transit-time and RC-time bandwidths are presented, and the PD photocurrent behavior against input optical power, and the optical signal manipulation techniques to improve the PD performance are also presented. After that, the impedance matching techniques between the PD output impedance and antenna input impedance are presented. Finally, recent photonic mmWave antenna designs are introduced. Full article
Show Figures

Figure 1

14 pages, 2652 KB  
Article
Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System
by Rahim Uddin, Weiping Li and Jianjun Yu
Sensors 2025, 25(16), 5010; https://doi.org/10.3390/s25165010 - 13 Aug 2025
Viewed by 363
Abstract
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing [...] Read more.
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing polarization-diverse optical heterodyne generation and spatial diversity reception, the system enhances spectral efficiency while addressing the low signal-to-noise ratio (SNR) and channel distortions inherent in long-haul links. A blind equalization scheme combining the constant modulus algorithm (CMA) and decision-directed least mean squares (DD-LMS) filtering enables rapid convergence and suppresses residual inter-symbol interference, effectively mitigating polarization drift and phase noise. The experimental results demonstrate an SNR gain of approximately 3 dB and a significant bit error rate (BER) reduction with MRC compared to single-antenna reception, along with improved SNR performance in multi-antenna configurations. The synergy of photonic mm Wave generation, adaptive spatial diversity, and pilot-free digital signal processing (DSP) establishes a robust framework for high-capacity wireless fronthaul, overcoming atmospheric attenuation and dynamic impairments. This approach highlights the viability of 16-QAM in next-generation ultra-high-speed networks (6G/7G), balancing high data rates with resilient performance under channel degradation. Full article
Show Figures

Figure 1

25 pages, 1731 KB  
Article
Coverage Analysis of 5G Intelligent High-Speed Railway System Based on Beamwidth-Adaptive Free-Space Optical Communication
by Shuai Dong, Zhi-Zhao Zeng, Dan-Ting Zhang, Zi-Qi Sun and Jin-Yuan Wang
Sensors 2025, 25(16), 4906; https://doi.org/10.3390/s25164906 - 8 Aug 2025
Viewed by 376
Abstract
The rapid development of intelligent high-speed railways (HSRs) has significantly improved the transportation efficiency of modern transit systems, while also imposing higher bandwidth demands on mobile communication systems. Free-space optical (FSO) communication technology, as a promising solution, can effectively meet the high-speed data [...] Read more.
The rapid development of intelligent high-speed railways (HSRs) has significantly improved the transportation efficiency of modern transit systems, while also imposing higher bandwidth demands on mobile communication systems. Free-space optical (FSO) communication technology, as a promising solution, can effectively meet the high-speed data transmission requirements in intelligent HSR scenarios. In this paper, we consider an intelligent HSR system based on beamwidth-adaptive FSO communication and investigate the coverage performance of the system. Different from the circular cells used in traditional radio frequency wireless communication systems, this paper focuses on the coverage problem of narrow-strip-shaped cells in HSR systems based on FSO communication. When the transmitter emits a wide beam, the channel gain includes geometric loss, atmospheric attenuation, and atmospheric turbulence. When the transmitter emits a narrow beam, the channel gain includes pointing error, atmospheric attenuation, and atmospheric turbulence. To adapt the width of the transmitter’s beam, we propose a beamwidth-adaptive HSR system and a beamwidth-adaptive method. Furthermore, we derive closed-form expressions of the edge coverage probability (ECP) and the percentage of cell coverage area (CCA), where the ECP is the probability that the received signal-to-noise ratio at the cell edge is greater than or equal to a given threshold, and the percentage of CCA dictates the percentage of locations within a cell that are not in outage. The accuracy of the derived theoretical expressions is validated through Monte-Carlo simulations. The average relative error of the ECP between theoretical and simulation results is only 0.035%, and the corresponding error of the percentage of CCA is 0.087%. In addition, the impacts of factors such as cell diameter, transmission power, signal-to-noise ratio threshold, and weather visibility on coverage performance are also discussed. Full article
Show Figures

Figure 1

23 pages, 1815 KB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Viewed by 798
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1738 KB  
Article
Evaluation of Optimal Visible Wavelengths for Free-Space Optical Communications
by Modar Dayoub and Hussein Taha
Telecom 2025, 6(3), 57; https://doi.org/10.3390/telecom6030057 - 4 Aug 2025
Viewed by 297
Abstract
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly [...] Read more.
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly wavelength-dependent under varying atmospheric conditions. This study presents an experimental evaluation of three visible laser diodes at 650 nm (red), 532 nm (green), and 405 nm (violet), focusing on their optical output power, quantum efficiency, and modulation behavior across a range of driving currents and frequencies. A custom laboratory testbed was developed using an Atmega328p microcontroller and a Visual Basic control interface, allowing precise control of current and modulation frequency. A silicon photovoltaic cell was employed as the optical receiver and energy harvester. The results demonstrate that the 650 nm red laser consistently delivers the highest quantum efficiency and optical output, with stable performance across electrical and modulation parameters. These findings support the selection of 650 nm as the most energy-efficient and versatile wavelength for short-range, cost-effective visible-light FSO communication. This work provides experimentally grounded insights to guide wavelength selection in the development of energy-efficient optical wireless systems. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

32 pages, 7263 KB  
Article
Time Series Prediction and Modeling of Visibility Range with Artificial Neural Network and Hybrid Adaptive Neuro-Fuzzy Inference System
by Okikiade Adewale Layioye, Pius Adewale Owolawi and Joseph Sunday Ojo
Atmosphere 2025, 16(8), 928; https://doi.org/10.3390/atmos16080928 - 31 Jul 2025
Viewed by 322
Abstract
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) [...] Read more.
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) techniques for several sub-tropical locations. The initial method used for the prediction of visibility in this study was the SVRA, and the results were enhanced using the ANN and ANFIS techniques. Throughout the study, neural networks with various algorithms and functions were trained with different atmospheric parameters to establish a relationship function between inputs and visibility for all locations. The trained neural models were tested and validated by comparing actual and predicted data to enhance visibility prediction accuracy. Results were compared to assess the efficiency of the proposed systems, measuring the root mean square error (RMSE), coefficient of determination (R2), and mean bias error (MBE) to validate the models. The standard statistical technique, particularly SVRA, revealed that the strongest functional relationship was between visibility and RH, followed by WS, T, and P, in that order. However, to improve accuracy, this study utilized back propagation and hybrid learning algorithms for visibility prediction. Error analysis from the ANN technique showed increased prediction accuracy when all the atmospheric variables were considered together. After testing various neural network models, it was found that the ANFIS model provided the most accurate predicted results, with improvements of 31.59%, 32.70%, 30.53%, 28.95%, 31.82%, and 22.34% over the ANN for Durban, Cape Town, Mthatha, Bloemfontein, Johannesburg, and Mahikeng, respectively. The neuro-fuzzy model demonstrated better accuracy and efficiency by yielding the finest results with the lowest RMSE and highest R2 for all cities involved compared to the ANN model and standard statistical techniques. However, the statistical performance analysis between measured and estimated visibility indicated that the ANN produced satisfactory results. The results will find applications in Optical Wireless Communication (OWC), flight operations, and climate change analysis. Full article
(This article belongs to the Special Issue Atmospheric Modeling with Artificial Intelligence Technologies)
Show Figures

Figure 1

12 pages, 2500 KB  
Article
Deep Learning-Based Optical Camera Communication with a 2D MIMO-OOK Scheme for IoT Networks
by Huy Nguyen and Yeng Min Jang
Electronics 2025, 14(15), 3011; https://doi.org/10.3390/electronics14153011 - 29 Jul 2025
Viewed by 473
Abstract
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as [...] Read more.
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as a result of worries about possible health problems connected to high-frequency radiofrequency transmission. Using the visible light spectrum is one promising approach; three cutting-edge technologies are emerging in this regard: Optical Camera Communication (OCC), Light Fidelity (Li-Fi), and Visible Light Communication (VLC). In this paper, we propose a Multiple-Input Multiple-Output (MIMO) modulation technology for Internet of Things (IoT) applications, utilizing an LED array and time-domain on-off keying (OOK). The proposed system is compatible with both rolling shutter and global shutter cameras, including commercially available models such as CCTV, webcams, and smart cameras, commonly deployed in buildings and industrial environments. Despite the compact size of the LED array, we demonstrate that, by optimizing parameters such as exposure time, camera focal length, and channel coding, our system can achieve up to 20 communication links over a 20 m distance with low bit error rate. Full article
(This article belongs to the Special Issue Advances in Optical Communications and Optical Networks)
Show Figures

Figure 1

6 pages, 531 KB  
Editorial
Advanced Technologies in Optical Wireless Communications
by Cuiwei He and Chen Chen
Photonics 2025, 12(8), 759; https://doi.org/10.3390/photonics12080759 - 28 Jul 2025
Viewed by 349
Abstract
Optical wireless communication (OWC) is expected to be a key component of future wireless communication networks, with a wide range of applications such as indoor visible-light communication (VLC) [...] Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

21 pages, 3942 KB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 679
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

29 pages, 7518 KB  
Article
LEDs for Underwater Optical Wireless Communication
by Giuseppe Schirripa Spagnolo, Giorgia Satta and Fabio Leccese
Photonics 2025, 12(8), 749; https://doi.org/10.3390/photonics12080749 - 25 Jul 2025
Viewed by 793
Abstract
LEDs are readily controllable and demonstrate rapid switching capabilities. These attributes facilitate their efficient integration across a broad spectrum of applications. Indeed, their inherent versatility renders them ideally suited for diverse sectors, including consumer electronics, traffic signage, automotive technology, and architectural illumination. Furthermore, [...] Read more.
LEDs are readily controllable and demonstrate rapid switching capabilities. These attributes facilitate their efficient integration across a broad spectrum of applications. Indeed, their inherent versatility renders them ideally suited for diverse sectors, including consumer electronics, traffic signage, automotive technology, and architectural illumination. Furthermore, LEDs serve as effective light sources for applications in spectroscopy, agriculture, pest control, and wireless optical transmission. The capability to choice high-efficiency LED devices with a specified dominant wavelength renders them particularly well-suited for integration into underwater optical communication systems. In this paper, we present the state-of-the-art of Light-Emitting Diodes (LEDs) for use in underwater wireless optical communications (UOWC). In particular, we focus on the challenges posed by water turbidity and evaluate the optimal wavelengths for communication in coastal environments, especially in the presence of chlorophyll or suspended particulate matter. Given the growing development and applications of underwater optical communication, it is crucial that the topic becomes not only a subject of research but also part of the curricula in technical school and universities. To this end, we introduce a simple and cost-effective UOWC system designed for educational purposes. Some tests have been conducted to evaluate the system’s performance, and the results have been reported. Full article
Show Figures

Figure 1

27 pages, 1665 KB  
Article
A Heuristic Optical Flow Scheduling Algorithm for Low-Delay Vehicular Visible Light Communication
by Zhengying Cai, Shumeng Lei, Jingyi Li, Chen Yu, Junyu Liu and Guoqiang Gong
Photonics 2025, 12(7), 693; https://doi.org/10.3390/photonics12070693 - 9 Jul 2025
Viewed by 258
Abstract
Vehicular visible light communication (VVLC) with ultralow electromagnetic interference has great potential to propel the growth of the Internet of Vehicles (IoV). However, ensuring quick response times and minimal delays in VVLC is a significant challenge brought on by fast-moving vehicles. In response [...] Read more.
Vehicular visible light communication (VVLC) with ultralow electromagnetic interference has great potential to propel the growth of the Internet of Vehicles (IoV). However, ensuring quick response times and minimal delays in VVLC is a significant challenge brought on by fast-moving vehicles. In response to this problem, we propose a heuristic optical flow scheduling algorithm. First, the optical flow scheduling problem of VVLC is built as a multi-objective optimization model considering the makespan, delay, schedulable ratio, and bandwidth utilization with non-conflict constraints. Second, an improved artificial plant community (APC) algorithm with enhanced global and local search capabilities is proposed to achieve low-delay communication for time-sensitive optical flows. Finally, a series of benchmark experiments are conducted to show that the proposed algorithm can efficiently schedule optical flows with minimal delay. The cost of this algorithm is very low, and it is suitable for deployment on edge computing platforms such as vehicles. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

12 pages, 1072 KB  
Article
Performance Evaluation of IM/DD FSO Communication System Under Dust Storm Conditions
by Maged Abdullah Esmail
Technologies 2025, 13(7), 288; https://doi.org/10.3390/technologies13070288 - 7 Jul 2025
Viewed by 365
Abstract
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior [...] Read more.
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior studies have addressed atmospheric effects such as fog and turbulence, the specific impact of dust on signal performance remains insufficiently explored. This work presents a probabilistic modeling framework for evaluating the performance of an intensity modulation/direct detection (IM/DD) FSO system under dust storm conditions. Using a controlled laboratory environment, we conducted measurements of the optical signal under dust-induced channel conditions using real-world dust samples collected from an actual dust storm. We identified the Beta distribution as the most accurate model for the measured signal fluctuations. Closed-form expressions were derived for average bit error rate (BER), outage probability, and channel capacity. The close agreement between the analytical, approximate, and simulated results validates the proposed model as a reliable tool for evaluating FSO system performance. The results show that the forward error correction (FEC) BER threshold of 103 is achieved at approximately 10.5 dB, and the outage probability drops below 103 at 10 dB average SNR. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

Back to TopTop