Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (593)

Search Parameters:
Keywords = worn surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 9524 KB  
Article
Effect of Heat Treatment on High-Temperature Tribological Behavior of WE54 Alloy: An Experimental Study
by Sudharsan Saravanan, Aditya Raman Hattimare, Atharva Bharat Mahadik, Arnav Singh, Uttamchand Narendra Kumar and A. Raja Annamalai
J. Manuf. Mater. Process. 2025, 9(9), 304; https://doi.org/10.3390/jmmp9090304 - 5 Sep 2025
Viewed by 75
Abstract
This study examines the high-temperature tribological behavior of WE54 Mg alloy under various conditions: as-cast, solution-treated (T4), age-hardened (T6), and secondary aged (S.A). Wear tests were performed using a pin-on-disc setup, applying a normal load of 10 N, with a sliding velocity of [...] Read more.
This study examines the high-temperature tribological behavior of WE54 Mg alloy under various conditions: as-cast, solution-treated (T4), age-hardened (T6), and secondary aged (S.A). Wear tests were performed using a pin-on-disc setup, applying a normal load of 10 N, with a sliding velocity of 1 m/s, a sliding distance of 1000 m, and temperatures from 25 °C to 150 °C. Responses such as the coefficient of friction and volumetric wear rate were recorded. The results indicate that heat treatment significantly influences the wear behavior of the WE54 alloy. The lowest volumetric wear rate (8.16 ± 1.47 mm3) and wear coefficient (0.112 ± 0.02) occurred in the as-cast sample at 100 °C, while the highest volumetric wear rate (14.68 ± 1.59 mm3) and wear coefficient (0.171 ± 0.02) were found in the S.A. sample at 150 °C. Surface characterization of worn samples was conducted using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The wear mechanisms identified include abrasive wear, oxidative wear, and delamination across all conditions, regardless of temperature. The elevated volumetric wear rate at 150 °C, irrespective of the sample condition, is attributed to oxidation and thermal softening of the material. Full article
Show Figures

Figure 1

22 pages, 9741 KB  
Article
Augminded: Ambient Mirror Display Notifications
by Timo Götzelmann, Pascal Karg and Mareike Müller
Multimodal Technol. Interact. 2025, 9(9), 93; https://doi.org/10.3390/mti9090093 - 4 Sep 2025
Viewed by 150
Abstract
This paper presents a new approach for providing contextual information in real-world environments. Our approach is consciously designed to be low-threshold; by using mirrors as augmented reality surfaces, no devices such as AR glasses or smartphones have to be worn or held by [...] Read more.
This paper presents a new approach for providing contextual information in real-world environments. Our approach is consciously designed to be low-threshold; by using mirrors as augmented reality surfaces, no devices such as AR glasses or smartphones have to be worn or held by the user. It enables technical and non-technical objects in the environment to be visually highlighted and thus subtly draw the attention of people passing by. The presented technology enables the provision of information that can be viewed in more detail by the user if required by slowing down their movement. Users can decide whether this is relevant to them or not. A prototype system was implemented and evaluated through a user study. The results show a high level of acceptance and intuitive usability of the system, with participants being able to reliably perceive and process the information displayed. The technology thus offers promising potential for the unobtrusive and context-sensitive provision of information in various application areas. The paper discusses limitations of the system and outlines future research directions to further optimize the technology and extend its applicability. Full article
Show Figures

Figure 1

18 pages, 3285 KB  
Article
Capillary Electro-Osmosis Properties of Water Lubricants Under a Steel-on-Steel Sliding Interface
by Bohua Feng, Xiaomei Guo, Gaoan Zheng, Zeqi Tong, Chen Yang and Xuefeng Xu
Processes 2025, 13(9), 2791; https://doi.org/10.3390/pr13092791 - 31 Aug 2025
Viewed by 307
Abstract
The process of penetration of lubricants into the frictional interface in steel machining such as turning and milling is not well revealed, which has thus compromised their machining performance. In this paper, the penetration characteristics of deionized water (Di-water) containing different electro-osmosis additives [...] Read more.
The process of penetration of lubricants into the frictional interface in steel machining such as turning and milling is not well revealed, which has thus compromised their machining performance. In this paper, the penetration characteristics of deionized water (Di-water) containing different electro-osmosis additives were investigated using a steel-on-steel friction pair. The worn surface lubricated with water solutions were examined using advanced surface analysis techniques. The results indicate that water lubricants were electrically driven to the frictional interface for lubrication. The addition of positive electro-osmosis additives helped promote the penetration of water solutions, thus resulting in the formation of a thick lubricating film of iron oxide at the sliding surface. This reduced abrasion damage significantly, therefore producing a lower coefficient of friction (COF) and wear loss in comparison with pure water. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

27 pages, 13580 KB  
Article
Understanding the Lubrication and Wear Behavior of Agricultural Components Under Rice Interaction: A Multi-Scale Modeling Study
by Honglei Zhang, Zhong Tang, Xinyang Gu and Biao Zhang
Lubricants 2025, 13(9), 388; https://doi.org/10.3390/lubricants13090388 - 30 Aug 2025
Viewed by 238
Abstract
This study investigates the tribological behavior and wear mechanisms of Q235 steel components subjected to abrasive interaction with rice, a critical challenge in agricultural machinery performance and longevity. We employed a comprehensive multi-scale framework, integrating bench-top tribological testing, advanced Discrete Element Method (DEM) [...] Read more.
This study investigates the tribological behavior and wear mechanisms of Q235 steel components subjected to abrasive interaction with rice, a critical challenge in agricultural machinery performance and longevity. We employed a comprehensive multi-scale framework, integrating bench-top tribological testing, advanced Discrete Element Method (DEM) coupled with a wear model (DEM-Wear), and detailed surface characterization. Bench tests revealed a composite wear mechanism for the rice–steel tribo-pair, transitioning from mechanical polishing under mild conditions to significant soft abrasive micro-cutting driven by the silica particles inherent in rice during high-load, high-velocity interactions. This elucidated fundamental friction and wear phenomena at the micro-level. A novel, calibrated DEM-Wear model was developed and validated, accurately predicting macroscopic wear “hot spots” on full-scale combine harvester header platforms with excellent geometric similarity to real-world wear profiles. This provides a robust predictive tool for component lifespan and performance optimization. Furthermore, fractal analysis was successfully applied to quantitatively characterize worn surfaces, establishing fractal dimension (Ds) as a sensitive metric for wear severity, increasing from ~2.17 on unworn surfaces to ~2.3156 in severely worn regions, directly correlating with the dominant wear mechanisms. This study offers a valuable computational approach for understanding and mitigating wear in tribosystems involving complex particulate matter, contributing to improved machinery reliability and reduced operational costs. Full article
Show Figures

Figure 1

54 pages, 7698 KB  
Review
Recent Advances in Ceramic-Reinforced Aluminum Metal Matrix Composites: A Review
by Surendra Kumar Patel and Lei Shi
Alloys 2025, 4(3), 18; https://doi.org/10.3390/alloys4030018 - 30 Aug 2025
Viewed by 362
Abstract
Aluminium metal matrix composites (AMMCs) incorporate aluminium alloys reinforced with fibres (continuous/discontinuous), whiskers, or particulate. These materials were engineered as advanced solutions for demanding sectors including construction, aerospace, automotive, and marine. Micro- and nano-scale reinforcing particles typically enable attainment of exceptional combined properties, [...] Read more.
Aluminium metal matrix composites (AMMCs) incorporate aluminium alloys reinforced with fibres (continuous/discontinuous), whiskers, or particulate. These materials were engineered as advanced solutions for demanding sectors including construction, aerospace, automotive, and marine. Micro- and nano-scale reinforcing particles typically enable attainment of exceptional combined properties, including reduced density with ultra-high strength, enhanced fatigue strength, superior creep resistance, high specific strength, and specific stiffness. Microstructural, mechanical, and tribological characterizations were performed, evaluating input parameters like reinforcement weight percentage, applied normal load, sliding speed, and sliding distance. Fabricated nanocomposites underwent tribometer testing to quantify abrasive and erosive wear behaviour. Multiple investigations employed the Taguchi technique with regression modelling. Analysis of variance (ANOVA) assessed the influence of varied test constraints. Applied load constituted the most significant factor affecting the physical/statistical attributes of nanocomposites. Sliding velocity critically governed the coefficient of friction (COF), becoming highly significant for minimizing COF and wear loss. In this review, the reinforcement homogeneity, fractural behaviour, and worn surface morphology of AMMCswere examined. Full article
Show Figures

Figure 1

13 pages, 1405 KB  
Article
Evaluating Machine Learning-Based Classification of Human Locomotor Activities for Exoskeleton Control Using Inertial Measurement Unit and Pressure Insole Data
by Tom Wilson, Samuel Wisdish, Josh Osofa and Dominic J. Farris
Sensors 2025, 25(17), 5365; https://doi.org/10.3390/s25175365 - 29 Aug 2025
Viewed by 367
Abstract
Classifying human locomotor activities from wearable sensor data is an important high-level component of control schemes for many wearable robotic exoskeletons. In this study, we evaluated three machine learning models for classifying activity type (walking, running, jumping), speed, and surface incline using input [...] Read more.
Classifying human locomotor activities from wearable sensor data is an important high-level component of control schemes for many wearable robotic exoskeletons. In this study, we evaluated three machine learning models for classifying activity type (walking, running, jumping), speed, and surface incline using input data from body-worn inertial measurement units (IMUs) and e-textile insole pressure sensors. The IMUs were positioned on segments of the lower limb and pelvis during lab-based data collection from 16 healthy participants (11 men, 5 women), who walked and ran on a treadmill at a range of preset speeds and inclines. Logistic Regression (LR), Random Forest (RF), and Light Gradient-Boosting Machine (LGBM) models were trained, tuned, and scored on a validation data set (n = 14), and then evaluated on a test set (n = 2). The LGBM model consistently outperformed the other two, predicting activity and speed well, but not incline. Further analysis showed that LGBM performed equally well with data from a limited number of IMUs, and that speed prediction was challenged by inclusion of abnormally fast walking and slow running trials. Gyroscope data was most important to model performance. Overall, LGBM models show promise for implementing locomotor activity prediction from lower-limb-mounted IMU data recorded at different anatomical locations. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

13 pages, 11786 KB  
Article
Self-Lubricating Ni-Based Composite Coating with Core-Shell Structured Mo@Ag@Ni Addition: Tribological Behaviors and Interface Evolution over Multi-Thermal Cycles
by Nairu He, Yuanhai Zhai, Ziwen Fang, Jie Yang and Wei Chen
Lubricants 2025, 13(9), 387; https://doi.org/10.3390/lubricants13090387 - 29 Aug 2025
Viewed by 331
Abstract
The rapid dissipation of soft metal lubricants would deteriorate the self-lubricating properties of the coatings at elevated temperatures. In this study, the core-shell structured Mo@Ag@Ni particles were prepared via electroless plating to suppress the rapid dissipation of Ag and facilitate tribochemical reactions at [...] Read more.
The rapid dissipation of soft metal lubricants would deteriorate the self-lubricating properties of the coatings at elevated temperatures. In this study, the core-shell structured Mo@Ag@Ni particles were prepared via electroless plating to suppress the rapid dissipation of Ag and facilitate tribochemical reactions at high temperatures. The NiCrAlY-Mo@Ag@Ni composite coating was sprayed on the substrate of Inconel 718 alloy using atmospheric plasma spraying technology. The results of this study show that the structural design of Mo@Ag@Ni can enhance the bonding strength of the particle interface, resulting in a high microhardness of approximately 332.2 HV. During high-temperature friction tests, Mo@Ag@Ni can provide excellent tribological properties by promoting the silver molybdate formation on the worn surface. At 800 °C, the friction coefficient and wear rate are only about 0.32 and 1.58 × 10−5 mm3N−1m−1, respectively. Moreover, the Ni shell layer can inhibit the rapid diffusion of Ag and provide sufficient Ag2O to maintain the continuity of Ag2MoO4 lubricating film, which endows the coating with a longer lubrication life. Over multi-thermal cycles, the friction coefficient and wear rate constantly maintain at about 0.3 and 2.5 × 10−5 mm3N−1m−1, respectively. Full article
(This article belongs to the Special Issue Tribological Properties of Sprayed Coatings)
Show Figures

Figure 1

25 pages, 13726 KB  
Article
Comprehensive Investigation of Coverage Rates of Shot Peening on the Tribological Properties of 6061-T6 Alloy
by Orçun Canbulat and Fatih Bozkurt
Metals 2025, 15(9), 964; https://doi.org/10.3390/met15090964 - 29 Aug 2025
Viewed by 240
Abstract
In the search for lightweight and sustainable engineering approaches, enhancing the surface wear resistance of structural materials, such as 6061-T6 aluminum alloy, has become increasingly important. This study investigates the effect of coverage rates on the tribological properties of shot-peened 6061-T6 alloy, aiming [...] Read more.
In the search for lightweight and sustainable engineering approaches, enhancing the surface wear resistance of structural materials, such as 6061-T6 aluminum alloy, has become increasingly important. This study investigates the effect of coverage rates on the tribological properties of shot-peened 6061-T6 alloy, aiming to improve its usage in industries where weight reduction and durability are important, such as aerospace, automotive, railway, and renewable energy systems. A shot peening process was applied at four different coverage rates of 100%, 200%, 500%, and 1500% for comprehensive evaluation. A series of experimental analyses were conducted, including microhardness tests, ball-on-plate wear tests, residual stress measurements, and surface roughness evaluations. Furthermore, microstructural analysis was performed to investigate subsurface deformation, and scanning electron microscopy (SEM) was carried out to identify the wear mechanisms of the worn surfaces in detail. The results demonstrated a clear trend of gradual improvement in wear resistance with increasing shot peen coverage. The sample treated at a 1500% coverage rate exhibited 1.34 times higher hardness and 19 times higher wear resistance compared to the untreated sample. This study highlights that shot peening is an effective and feasible surface engineering method for enhancing the wear performance of 6061-T6 alloy. The findings offer valuable contributions for the development of lightweight and wear-resistant components considering sustainable material design. Full article
Show Figures

Figure 1

21 pages, 22656 KB  
Article
Development of a Laser Cladding Technology for Repairing First-Stage High-Pressure Turbine Blades in Gas Turbine Engines
by Stepan Tukov, Rudolf Korsmik, Grigoriy Zadykyan, Dmitrii Mukin, Ruslan Mendagaliev and Nikita Roschin
Metals 2025, 15(9), 957; https://doi.org/10.3390/met15090957 - 28 Aug 2025
Viewed by 371
Abstract
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to [...] Read more.
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to repair the worn surfaces of a series of DR-59L high-pressure turbine blades by laser powder cladding. A number of technological parameters of laser cladding were tested to obtain a defect-free structure on the witness sample. The metal powder of the cobalt alloy Stellite 21 was used as a filler material. By modeling the process of restoring rotor blades, the operating mode of laser powder cladding was determined. No defects were detected during capillary control of the restored surfaces of the rotor blades. The results of the uniaxial tension test of the restored rotor blades showed increased tensile strength and elongation. With the use of laser powder cladding technology, it was possible to restore the worn surfaces of a series of rotor blades of the DR-59L high-pressure turbine, thereby increasing the life cycle of power plant products. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

20 pages, 9379 KB  
Article
Tribological Properties of Diamond/Diamond-like Carbon (DLC) Composite Coating in a Dry Environment
by Chengye Yang, Zhengxiong Ou, Yuanyuan Mu, Xingqiao Chen, Shihao Yang, Peng Guo, Nan Jiang, Kazuhito Nishimura, Xinbiao Mao, Hui Song and He Li
Materials 2025, 18(16), 3879; https://doi.org/10.3390/ma18163879 - 19 Aug 2025
Viewed by 521
Abstract
In this study, a diamond/diamond-like carbon (DLC) composite coating was designed and fabricated utilizing a combination of chemical vapor deposition (CVD) and magnetron-sputtering-assisted ion beam deposition. This was designed to cope with severe problems such as high wear due to insufficient lubrication under [...] Read more.
In this study, a diamond/diamond-like carbon (DLC) composite coating was designed and fabricated utilizing a combination of chemical vapor deposition (CVD) and magnetron-sputtering-assisted ion beam deposition. This was designed to cope with severe problems such as high wear due to insufficient lubrication under dry sliding conditions with a single diamond. The tribological properties of the fabricated coatings under dry conditions were comparatively evaluated. The results demonstrate that the diamond/DLC composite coatings significantly enhance the tribological performance relative to their single-layer diamond counterparts. Specifically, a 33.73% reduction in the average friction coefficient and a 39.55% decrease in the average wear rate were observed with the MCD (microcrystalline diamond/DLC coating. Similarly, a 16.85% reduction in the average friction coefficient and a 9.69% decrease in the average wear rate were observed with the UNCD (ultrananocrystalline diamond)/DLC coating. Analysis of the worn track morphology and structure elucidated the underlying friction mechanism. It is proposed that the DLC top layer reduces the surface roughness of the underlying diamond coating and mitigates abrasive wear in the dry environment. Furthermore, the presence of the DLC film promotes graphitization via phase transition during sliding, which enhances lubricity and facilitates the establishment of a smooth friction interface. Full article
Show Figures

Figure 1

32 pages, 6746 KB  
Article
Tribo-Electric Performance of Nano-Enhanced Palm Oil-Based Glycerol Grease for Electric Vehicle Bearings
by Amany A. Abozeid, May M. Youssef, Tamer F. Megahed, Mostafa El-Helaly, Florian Pape and Mohamed G. A. Nassef
Lubricants 2025, 13(8), 354; https://doi.org/10.3390/lubricants13080354 - 8 Aug 2025
Viewed by 555
Abstract
Rolling Bearings are crucial components for induction motors and generators in electric vehicles (EVs), as their performance considerably influences the system’s operational reliability and safety. However, the commercial greases used for bearing lubrication in EV motors pose a detrimental impact on the environment. [...] Read more.
Rolling Bearings are crucial components for induction motors and generators in electric vehicles (EVs), as their performance considerably influences the system’s operational reliability and safety. However, the commercial greases used for bearing lubrication in EV motors pose a detrimental impact on the environment. In addition, they are ineffective in mitigating the effect of electric discharges on rolling surfaces leading to premature bearing failures. This study investigates the viability of a developed eco-friendly grease from palm olein as the base oil and glycerol monostearate as the thickener, enhanced with conductive multi-walled carbon nanotubes (MWCNTs) for EV motor bearings prone to electrical currents. Chemical–physical, tribological, and electrical tests were conducted on the developed grease samples without and with MWCNTs at 1 wt.%, 2 wt.%. and 3 wt.% concentrations and results were compared to lithium and sodium greases. Palm grease samples demonstrated a lower EDM voltage range reaching 1.0–2.2 V in case of 3 wt.% MWCNTs blends, indicating better electrical conductivity and protecting the bearing surfaces from electric-related faults. These findings were further confirmed using vibrations measurement and SEM-EDX analysis of the electrically worn bearings. Bearings lubricated with palm grease blends exhibited lower vibration levels. Palm grease with 2 wt.% MWCNTs reduced vibration amplitudes by 28.4% (vertical) and 32.3% (horizontal). Analysis of bearing damaged surfaces revealed enhanced damaged surface morphology for MWCNT-enhanced palm grease as compared to surface lubricated by commercial greases. The results of this work indicate that the proposed bio-grease is a promising candidate for future application in the field of next-generation electric mobility systems. Full article
(This article belongs to the Special Issue Tribology in Vehicles)
Show Figures

Figure 1

16 pages, 14261 KB  
Article
Effect of Er Microalloying and Zn/Mg Ratio on Dry Sliding Wear Properties of Al-Zn-Mg Alloy
by Hanyu Chen, Xiaolan Wu, Xuxu Ding, Shengping Wen, Liang Hong, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Materials 2025, 18(15), 3541; https://doi.org/10.3390/ma18153541 - 29 Jul 2025
Viewed by 373
Abstract
In this study, dry sliding wear tests were carried out on Er, Zr-microalloyed Al-Zn-Mg alloys with different Zn/Mg ratios under 30–70 N loads. The effects of the Zn/Mg content ratio and Er microalloying on the friction coefficient, wear volume loss, worn surface, and [...] Read more.
In this study, dry sliding wear tests were carried out on Er, Zr-microalloyed Al-Zn-Mg alloys with different Zn/Mg ratios under 30–70 N loads. The effects of the Zn/Mg content ratio and Er microalloying on the friction coefficient, wear volume loss, worn surface, and wear debris during the friction process of Al-Zn-Mg alloys were analyzed. At the load of 30 N, abrasive wear, fatigue wear, and adhesive wear were synergistically involved. At a load of 50 N, the abrasive wear dominated, accompanied by fatigue wear and adhesive wear. At a load of 70 N, the primary wear mechanisms transitioned to abrasive wear and fatigue wear, with additional adhesive wear and oxidative wear observed. Reducing the Zn/Mg ratio mitigated wear volume across all tested loads. For the Al4.5Zn1.5Mg alloy, Er microalloying significantly reduced wear volume under moderate-to-low loads (30 N, 50 N). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 25086 KB  
Article
U-Net Segmentation with Bayesian-Optimized Weight Voting for Worn Surface Analysis of a PEEK-Based Tribological Composite
by Yuxiao Zhao and Leyu Lin
Lubricants 2025, 13(8), 324; https://doi.org/10.3390/lubricants13080324 - 24 Jul 2025
Viewed by 587
Abstract
This study presents a U-Net-based automatic segmentation framework for quantitative analysis of surface morphology in a PEEK-based composite following tribological testing. Controlled Pin-on-Disc tests were conducted to characterize tribological performance, worn surfaces were captured by laser scanning microscopy to acquire optical images and [...] Read more.
This study presents a U-Net-based automatic segmentation framework for quantitative analysis of surface morphology in a PEEK-based composite following tribological testing. Controlled Pin-on-Disc tests were conducted to characterize tribological performance, worn surfaces were captured by laser scanning microscopy to acquire optical images and height maps, and the model produced pixel-level segmentation masks distinguishing different regions, enabling high-throughput, objective analysis of worn surface morphology. Sixty-three manually annotated image sets—with labels for fiber, third-body patch, and matrix regions—formed the training corpus. A 70-layer U-Net architecture with four-channel input was developed and rigorously evaluated using five-fold cross-validation. To enhance performance on the challenging patch and fiber classes, the top five model instances were ensembled through Bayesian-optimized weighted voting, achieving significant improvements in class-specific F1 metrics. Segmentation outputs on unseen data confirmed the method’s robustness and generalizability across complex surface topographies. This approach establishes a scalable, accurate tool for automated morphological analysis, with potential extensions to real-time monitoring and other composite systems. Full article
(This article belongs to the Special Issue New Horizons in Machine Learning Applications for Tribology)
Show Figures

Figure 1

23 pages, 10696 KB  
Article
High-Temperature Wear Properties of Laser Powder Directed Energy Deposited Ferritic Stainless Steel 430
by Samsub Byun, Hyun-Ki Kang, Jongyeob Lee, Namhyun Kang and Seunghun Lee
Micromachines 2025, 16(7), 752; https://doi.org/10.3390/mi16070752 - 26 Jun 2025
Viewed by 492
Abstract
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims [...] Read more.
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims to examine the microstructural characteristics and wear properties of laser powder directed energy deposition (LP-DED) FSS 430 fabricated under varying laser powers and hatch distances. Wear testing was conducted at 25 °C and 300 °C after subjecting the samples to solution heat treating at 815 °C and 980 °C for 1 h, followed by forced fan cooling. For comparison, an AISI 430 commercial plate was also tested under the same test conditions. The microstructural evolution and worn surfaces were analyzed using SEM-EDS and EBSD techniques. The wear performance was evaluated based on the friction coefficients and cross-sectional profiles of wear tracks, including wear volume, maximum depth, and scar width. The average friction coefficients (AFCs) of the samples solution heat treated at 980 °C were higher than those treated at 815 °C. Additionally, the AFCs increased with hatch distance at both testing temperatures. A strong correlation was observed between Rockwell hardness and wear resistance, indicating that higher hardness generally results in improved wear performance. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 5025 KB  
Article
Impact of High Contact Stress on the Wear Behavior of U75VH Heat-Treated Rail Steels Applied for Turnouts
by Ruimin Wang, Guanghui Chen, Nuoteng Xu, Linyu Sun, Junhui Wu and Guang Xu
Metals 2025, 15(6), 676; https://doi.org/10.3390/met15060676 - 18 Jun 2025
Viewed by 417
Abstract
Considering the greater contact stress of turnout rails during wear and the development of heavy-haul railways, twin-disc sliding–rolling wear tests were performed on U75VH heat-treated rail steels applied for turnouts under high contact stress ranging from 1980 MPa to 2270 MPa. The microstructure [...] Read more.
Considering the greater contact stress of turnout rails during wear and the development of heavy-haul railways, twin-disc sliding–rolling wear tests were performed on U75VH heat-treated rail steels applied for turnouts under high contact stress ranging from 1980 MPa to 2270 MPa. The microstructure of the worn surfaces was analyzed using optical microscope (OM), scanning electron microscope (SEM), 3D microscope, electron backscatter diffraction (EBSD), and hardness tests. The results indicated that after 10 h of wear, the weight loss was 63 mg at a contact stress of 1980 MPa, while it reached 95 mg at a contact stress of 2270 MPa. At a given contact stress, the wear rate increased with increasing wear time, while a nearly linear increase in wear rate was observed with increasing contact stress. As wear time and contact stress increased, the worn surface showed more pronounced wear morphology, leading to greater surface roughness. Crack length significantly increased with wear time, and higher contact stress facilitated crack propagation, resulting in longer, deeper cracks. After 10 h of wear under a contact stress of 2270 MPa, large-scale cracks with a maximum length of 128.29 μm and a maximum depth of 31.10 μm were formed, indicating severe fatigue wear. Additionally, the thickness of the plastic deformation layer increased with the wear time and contact stress. The surface hardness was dependent on the thickness of this layer. After 10 h of wear under the minimum and maximum contact stresses, hardening rates of 0.39 and 0.48 were achieved, respectively. Full article
(This article belongs to the Special Issue Metallic Materials Behaviour Under Applied Load)
Show Figures

Figure 1

Back to TopTop