Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,316)

Search Parameters:
Keywords = zoonotic diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1703 KB  
Article
Retrospective Analysis of the Impact of Vaccination with an Inactivated Vaccine on Toxoplasmosis-Associated Mortality in Captive Wildlife
by Angelo Scuotto, Daniela Ogonczyk-Makowska, Alicia Quiévy, Mélanie Berthet, Kévin Schlax, Didier Boussarie, Alexis Maillot, Florine Popelin-Wedlarski, Thomas Charpentier, Maïalen Perot, Benoît Quintard, Marloes van Elderen, Job Benjamin Gérard Stumpel, Stamatios Alan Tahas, Anna Modlinska, Viktória Sós-Koroknai, Alexandre Azevedo, María del Carmen Carmona Muciño, Mariana Castilho Martins, Carlos Madrid, Juliana Peña Stadlin, Lina M. Henao-Montoya and Didier Betbederadd Show full author list remove Hide full author list
Vaccines 2025, 13(9), 910; https://doi.org/10.3390/vaccines13090910 (registering DOI) - 27 Aug 2025
Abstract
Background/Objectives: Toxoplasma gondii is a major cause of zoonotic infections in both humans and animals, resulting in significant mortality in susceptible species, such as New World primates and marsupials. Toxoplasmosis is particularly concerning in zoos and wildlife reserves, where outbreaks threaten conservation [...] Read more.
Background/Objectives: Toxoplasma gondii is a major cause of zoonotic infections in both humans and animals, resulting in significant mortality in susceptible species, such as New World primates and marsupials. Toxoplasmosis is particularly concerning in zoos and wildlife reserves, where outbreaks threaten conservation efforts for endangered species. In the absence of a commercially available vaccine against toxoplasmosis for humans and captive wild animals, current prevention strategies are limited to restricting the access of cats to enclosures, controlling rodent populations, and maintaining strict food hygiene. Recent research has shown promising results with an intranasal vaccine (VXN-Toxo) composed of maltodextrin nanoparticles conjugated with a purified, inactivated T. gondii parasite. This experimental vaccine does not pose a risk of causing disease and offers advantages such as better stability compared with live pathogen-based vaccines. Methods: This study presents a large-scale evaluation of the effect of VXN-Toxo administered to captive wildlife across 20 zoos in Europe and the Americas between 2017 and 2025. Seven hundred and eighty-four animals, representing over 58 species (including primates, marsupials, rodents, and felids), were vaccinated without any adverse events reported. Results: Retrospective mortality data from 20 participating zoological institutions revealed an overall 96.7% reduction—and, in many cases, a complete elimination—of toxoplasmosis-associated deaths post vaccination. Conclusions: These results demonstrate, for the first time, consistent and broad-spectrum protection against T. gondii of different strains in a wide array of captive wildlife species. This universal vaccine represents a promising tool for toxoplasmosis prevention in zoological collections, with significant implications for animal health and conservation strategies. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
16 pages, 1069 KB  
Review
Newly Discovered Rustrela Virus: Current State of Knowledge About the Etiological Agent of Feline “Staggering Disease”
by Anna Słońska, Ilona Stefańska, Ewelina Kwiecień and Dorota Chrobak-Chmiel
Pathogens 2025, 14(9), 851; https://doi.org/10.3390/pathogens14090851 - 27 Aug 2025
Abstract
The rustrela virus (RusV), a recently discovered member of the Matonaviridae family and a close relative of the rubella virus, has emerged as the etiological agent of “staggering disease”—a progressive neurological disorder primarily affecting domestic cats and other mammals. Characterized by nonsuppurative meningoencephalomyelitis, [...] Read more.
The rustrela virus (RusV), a recently discovered member of the Matonaviridae family and a close relative of the rubella virus, has emerged as the etiological agent of “staggering disease”—a progressive neurological disorder primarily affecting domestic cats and other mammals. Characterized by nonsuppurative meningoencephalomyelitis, RusV infection manifests with clinical signs such as ataxia, seizures, and behavioral abnormalities. First identified in 2020, RusV has since been detected in various mammalian species across Europe and, more recently, in North America. This review provides a comprehensive summary of the current knowledge of RusV, including its taxonomy, genomic structure, host range, transmission hypotheses, clinical and histopathological features, and diagnostic challenges. Although the potential for zoonotic spillover has not yet been confirmed, it highlights the need for increased surveillance and further research. As an emerging neurotropic virus with potential for cross-species transmission, RusV may represent a significant concern for veterinary medicine and public health. Full article
Show Figures

Figure 1

25 pages, 1701 KB  
Review
Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions
by Jaclyn Swan, Timothy C. Cameron, Terry W. Spithill and Travis Beddoe
Biomolecules 2025, 15(9), 1235; https://doi.org/10.3390/biom15091235 - 26 Aug 2025
Abstract
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new [...] Read more.
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new therapeutic treatments against F. hepatica. The tegument surface of F. hepatica is characterized by a dynamic syncytial layer surrounded by a glycocalyx, which serves as a crucial interface in host–parasite interactions, facilitating functions such as nutrient absorption, sensory input, and defense against the host immune response. Despite its pivotal role, only recently have we delved deeper into understanding glycans at the host–parasite interface and the glycosylation of hidden antigens. These glycan antigens have shown promise for vaccine development or as targets for drug manipulation across various pathogenic species. This review aims to consolidate current knowledge on the glycosylation of F. hepatica, exploring glycan motifs identified through generic lectin probing and mass spectrometry. Additionally, it examines the interaction of glycoconjugates with lectins from the innate immune systems of both ruminant and human host species. An enhanced understanding of glycans’ role in F. hepatica biology and their critical involvement in host–parasite interactions will be instrumental in developing novel strategies to combat these parasites effectively. In the future, a more comprehensive approach may be adopted in selecting and designing potential vaccine targets, integrating insights from glycosylation studies to improve efficacy. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

15 pages, 1279 KB  
Article
Characterization of Anopheles Species and Entomological Indicators Following Indoor Residual Spraying Campaign in Cuando Cubango, Angola
by André Domingos, Ana Direito, Gonçalo Alves, Paulo Máquina, Cani P. Jorge, José F. Martins, Lizette L. Koekemoer, Sergio Lopes and Luzala Garcia
Insects 2025, 16(9), 892; https://doi.org/10.3390/insects16090892 - 26 Aug 2025
Abstract
Malaria remains a significant public health challenge in Angola, particularly in Cuando Cubango province. This study aimed to characterize the local Anopheles mosquito population, evaluate the impact of indoor residual spraying (IRS) on key entomological indicators, and assess the community knowledge, attitudes, and [...] Read more.
Malaria remains a significant public health challenge in Angola, particularly in Cuando Cubango province. This study aimed to characterize the local Anopheles mosquito population, evaluate the impact of indoor residual spraying (IRS) on key entomological indicators, and assess the community knowledge, attitudes, and practices (KAP) related to malaria and vector control. Mosquito collections were conducted indoors at three sites over five months using CDC light traps and Prokopack aspirators. Ten Anopheles species were identified, with An. funestus s.s. being the predominant vector, accounting for 91.7% of the Funestus group. The overall Plasmodium falciparum circumsporozoite protein (CSP) infection rate was 9.2%, with Makua exhibiting the highest rate (10.2%). Following IRS, the indoor resting density of the Funestus group decreased significantly in Makua and Agostinho Neto. In Makua, An. funestus s.s. CSP infection rates decreased by 55% following IRS implementation; however, this reduction was not statistically significant. Knockdown resistance mutations were detected in An. arabiensis and An. gambiae s.s. The 2020/2021 IRS campaign achieved 95% spray coverage and reached 421,856 individuals. Complementary KAP surveys with 647 households showed that 87% of respondents correctly identified mosquitoes as malaria vectors, 78% recognized key symptoms, and 89% supported continued IRS. Reported adherence to post-IRS precautions exceeded 70% and preference for IRS over ITN was expressed by most households. These findings highlight both biological and social dimensions of malaria control, demonstrating that vector control, community acceptance, and entomological surveillance are essential for effective and sustainable malaria interventions in Cuando Cubango. Full article
Show Figures

Figure 1

15 pages, 614 KB  
Article
Metagenomic Analysis of the Fecal Virome in Wild Mammals Hospitalized in Pisa, Italy
by Maria Irene Pacini, Mario Forzan, Micaela Sgorbini, Dania Cingottini and Maurizio Mazzei
Vet. Sci. 2025, 12(9), 820; https://doi.org/10.3390/vetsci12090820 - 26 Aug 2025
Abstract
Emerging infectious diseases, particularly those of zoonotic origin, often originating from wildlife reservoirs represent a growing threat to global health. Human-driven environmental changes such as habitat fragmentation, climate change, and urban expansion have intensified interactions at the wildlife–domestic animal–human interface, facilitating cross-species viral [...] Read more.
Emerging infectious diseases, particularly those of zoonotic origin, often originating from wildlife reservoirs represent a growing threat to global health. Human-driven environmental changes such as habitat fragmentation, climate change, and urban expansion have intensified interactions at the wildlife–domestic animal–human interface, facilitating cross-species viral transmission. Despite their epidemiological importance, systematic virological surveillance of wildlife remains challenging. In this study, we employed shotgun metagenomic sequencing to characterize the virome of wild animals rescued in the Pisa area and hospitalized at the “Mario Modenato” Veterinary Teaching Hospital (VTH) at the University of Pisa. Fecal samples collected from injured wildlife admitted between September 2020 and September 2021 were analyzed to detect both known and novel viruses. This approach builds upon previous PCR-based investigations of the same biological material, enabling a more comprehensive assessment of viral diversity. We adopted a shotgun approach for analyzing six sample pools—four were positive for at least one viral target—identifying diverse viral families, including Astroviridae, Circoviridae, Picornaviridae, Adenoviridae, and Retroviridae, in asymptomatic wildlife admitted to a veterinary hospital, highlighting their potential role as reservoirs. Our findings provide insights into the influence of environmental and anthropogenic factors on wildlife virome composition and highlight the value of hospital-based sampling strategies for urban viral surveillance. The results contribute to the development of integrated monitoring and prevention strategies within a One Health framework. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
16 pages, 1217 KB  
Systematic Review
Epidemiology and Diversity of Paratuberculosis in the Arabian Peninsula: A Systematic Review and Meta-Analysis with Implications for One Health
by Md Mazharul Islam, Ahmed K. Elfadl, Aisha Naeem, Randa Abdeen, Haya M. Al-Hajri, Md Abu Sayeed, Haileyesus Dejene, John I. Alawneh and Mohammad Mahmudul Hassan
Pathogens 2025, 14(9), 841; https://doi.org/10.3390/pathogens14090841 - 23 Aug 2025
Viewed by 228
Abstract
Paratuberculosis is a chronic zoonotic bacterial infection, primarily affecting ruminants. This review examines the disease in the Arabian Peninsula, focusing on distribution, molecular diversity, prevalence, and associated risk factors. Following PRISMA guidelines, a systematic search was conducted in PubMed, Scopus, and Web of [...] Read more.
Paratuberculosis is a chronic zoonotic bacterial infection, primarily affecting ruminants. This review examines the disease in the Arabian Peninsula, focusing on distribution, molecular diversity, prevalence, and associated risk factors. Following PRISMA guidelines, a systematic search was conducted in PubMed, Scopus, and Web of Science. After duplicate removal and eligibility screening, data extraction, analysis, and quality assessment were performed. Pathogen sequences were retrieved from NCBI GenBank for phylogenetic analysis. The review included a total of 31 published articles from 1997 to 2025, of which 26 were used in the meta-analysis. Most studies (n = 12) were published between 2011 and 2015, predominantly from Saudi Arabia (n = 22), with no reports from Qatar, Bahrain, or Yemen. The majority of the studies involved camels and sheep (n = 16 on each species), followed by cattle (n = 9), goats (n = 7), humans (n = 2), and buffalo (n = 1). Phylogenetic analysis delineates two major clades—Type S and Type C—suggesting greater genetic diversity in Type S. The estimated pooled seroprevalence and pathogen prevalence in livestock ruminants were 8.1% and 22.4%, respectively. Herd-level estimated pooled seroprevalence was 26.9%. Small ruminants (19.3%) were more sero-prevalent than large ruminants (7.4%), with goats (28.7%) significantly (p < 0.01) more affected than sheep (21.5%), camel (9.8%), and cattle (6.6%). Clinical signs in ruminants included chronic diarrhea, emaciation, anorexia, alopecia, wry neck, and dehydration. The reviewed study patterns and findings suggest high pathogen diversity and a significant risk of transboundary transmission at the human–animal interface in this region. A One Health surveillance approach is crucial, particularly on farms with diarrheic and emaciated animals. Establishing a national surveillance plan and phased (short-, intermediate-, and long-term) control programs is essential to mitigate economic losses, limit transmission, overcome the cultural barrier, and protect public health. Full article
Show Figures

Figure 1

15 pages, 1771 KB  
Article
Inhibition of NOX4-Mediated ROS Production Contributes to Selenomethionine’s Anti-Inflammatory Effect in LPS-Stimulated Bovine Endometrial Epithelial Cells
by Luying Cui, Wanting Li, Sasa He, Long Guo, Kangjun Liu, Junsheng Dong, Jianji Li and Heng Wang
Vet. Sci. 2025, 12(9), 789; https://doi.org/10.3390/vetsci12090789 - 22 Aug 2025
Viewed by 215
Abstract
Bovine endometritis can be caused by Escherichia coli (E. coli), from which the lipopolysaccharide (LPS) triggers TLR4/NF-κB-mediated inflammation and reactive oxygen species (ROS) overproduction, resulting in impaired reproductive performance. While NADPH oxidase (NOX) is a critical source of ROS generation, its [...] Read more.
Bovine endometritis can be caused by Escherichia coli (E. coli), from which the lipopolysaccharide (LPS) triggers TLR4/NF-κB-mediated inflammation and reactive oxygen species (ROS) overproduction, resulting in impaired reproductive performance. While NADPH oxidase (NOX) is a critical source of ROS generation, its role in bovine endometrial epithelial cells (BEEC) and modulation by selenium remains unexplored. In this study, primary BEEC was challenged by LPS to assess NOX2/4 expression kinetics. Inhibitors of NOX and NF-κB were applied to observe the role of NOX-derived ROS in BEEC inflammation and in selenomethionine (SeMet)-modulated anti-inflammation. ROS levels were measured by flow cytometry. The changes in inflammatory cytokines, and the proteins related to NOX4 and NF-κB, were analyzed via qPCR and Western blot. As a result, the inhibition of NOX decreased LPS-induced proinflammatory cytokine expression, ROS accumulation, NOX4 level, and the phosphorylation of NF-κB P65 and IκBα. Conversely, the suppression of NF-κB downregulated the levels of ROS and NOX4. Cotreatment with SeMet and a NOX inhibitor further suppressed the inflammatory response, ROS level, and NF-κB pathway activation compared to individual treatment, but had no additive effect on the NOX4 protein level. In conclusion, the NOX4/ROS/NF-κB axis forms a proinflammatory feedback loop in LPS-stimulated BEEC. SeMet mitigates oxidative stress and inflammation partially through NOX4 inhibition. Full article
(This article belongs to the Special Issue Prevention and Control of Obstetric Diseases in Domestic Animals)
Show Figures

Figure 1

14 pages, 4701 KB  
Article
A QS21+ CpG-Adjuvanted Rabies Virus G Subunit Vaccine Elicits Superior Humoral and Moderate Cellular Immunity
by Han Cao, Hui Li, Wenzhi Liu, Ning Luan, Jingping Hu, Meijun Kong, Jie Song and Cunbao Liu
Vaccines 2025, 13(8), 887; https://doi.org/10.3390/vaccines13080887 - 21 Aug 2025
Viewed by 239
Abstract
Background: Rabies remains a fatal zoonotic disease caused by rabies virus (RABV), posing substantial global health challenges. Current vaccine production faces challenges in manufacturing efficiency and cost-effectiveness. The RABV glycoprotein (RABV-G) serves as the key antigen for eliciting protective immunity. Methods: We developed [...] Read more.
Background: Rabies remains a fatal zoonotic disease caused by rabies virus (RABV), posing substantial global health challenges. Current vaccine production faces challenges in manufacturing efficiency and cost-effectiveness. The RABV glycoprotein (RABV-G) serves as the key antigen for eliciting protective immunity. Methods: We developed a novel QS21+CpG-adjuvanted RABV-G subunit vaccine and systematically compared its performance against three control formulations: mRNA vaccine composed of H270P-targeted mutation packaged in lipid nanoparticles (LNP), named LNP-mRNA-G-H270P, commercial inactivated vaccine, and alum-adjuvanted RABV-G subunit vaccine. Results: The result show that the G+QS21+CpG subunit vaccine elicited superior humoral immunity, as evidenced by significantly higher RABV-G-specific IgG titers and virus-neutralizing antibody responses compared to all other groups. The LNP-mRNA-G-H270P vaccine maintained its expected cellular immunity advantage, with the G+QS21+CpG group exhibiting moderately reduced but still significant levels of IFN-γ-secreting splenocytes and levels of IL-2 in the supernatant of spleen cells, as well as IFN-γ-producing CD4+ T cells. Both LNP-mRNA-G-H270P and G+QS21+CpG vaccine groups provided 100% protection against lethal challenge (50LD50 RABV). Conclusions: These findings provide novel vaccine/adjuvant strategies for rabies while elucidating platform-specific immunogenicity patterns, offering critical insights for pathogens requiring balanced humoral/cellular immunity. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

19 pages, 1910 KB  
Review
Hansen’s Disease in Ecuador: Current Status, Knowledge Gaps, and Research Priorities: A Literature Review
by Manuel Calvopiña, Juan S. Izquierdo-Condoy, Esteban Ortiz-Prado, Jorge Vasconez-Gonzalez, Lorena Vaca and Elías Guamán
Pathogens 2025, 14(8), 832; https://doi.org/10.3390/pathogens14080832 - 21 Aug 2025
Viewed by 281
Abstract
Background: Hansen’s disease or leprosy is one of the 21 neglected tropical diseases (NTDs). In Ecuador, leprosy is considered eliminated as a public health problem; however, new cases are reported annually. Additionally, Mycobacterium leprae infection was detected in nine-banded armadillos across the country, [...] Read more.
Background: Hansen’s disease or leprosy is one of the 21 neglected tropical diseases (NTDs). In Ecuador, leprosy is considered eliminated as a public health problem; however, new cases are reported annually. Additionally, Mycobacterium leprae infection was detected in nine-banded armadillos across the country, suggesting a potential zoonotic reservoir. This literature review aims to provide an updated overview of the epidemiological situation of leprosy in Ecuador, identify knowledge gaps, and outline research priorities to support the development of a comprehensive national strategy for achieving zero autochthonous cases. Methods: This article analyses the current situation of leprosy in Ecuador based on international and national publications. A retrospective literature search using five international, regional, and national publications on leprosy published between 1954 and 2024 (70 years) with no restriction on language or publication date, was performed. Findings: Our review identified 28 publications with the earliest article dating back to 1954. Of these, 14 were published in international journals, 15 (53.6%) were in Spanish. Four nationwide studies documented leprosy cases across Ecuador’s three continental regions (Coast, Andes, and Amazon) with a predominance in the tropical coast. No cases have been reported from the Galápagos Islands. From 1983, Ecuador started multi-drug therapy. Data from the Ministry of Public Health (MoH) system identified 1539 incident cases, showing a significant decline in new cases from 2000 to 2024, with no cases in children. New cases detection rate by 100,000 inhabitants was 0.51 in 2019 according to the World Health Organization (WHO). No study has genotyped the Mycobacterium spp. in human cases, other animal species, or environment. According to the MoH, multibacillary leprosy accounts for 78.95% of diagnosed cases, with confirmation based on Ziehl–Neelsen staining and histopathology. No survey has assessed disabilities, knowledge, attitudes, and practices (KAP) or stigma related to leprosy. Research is needed on transmission routes, Mycobacterium genotyping, genetic susceptibility, and antibiotic resistance. BCG vaccination coverage fell to 75.3% in 2021. Cases are currently diagnosed and treated on an outpatient basis in large hospitals. Conclusions: This comprehensive review highlights persistent gaps in leprosy research and critical information, despite seven decades of documented cases in Ecuador. The disease is still endemic across the country, particularly at subnational level in the subtropics and tropics of the Pacific coast and the Amazon. There is a need for nationwide epidemiological research on reservoirs and the environment applying the One Health concept. Increased laboratory facilities and readily available official data are required to improve our understanding of leprosy in Ecuador. Strengthening community-level efforts is essential for Ecuador to meet the targets of the “WHO’s Towards Zero Leprosy: Strategy 2021–2030.” Full article
Show Figures

Figure 1

18 pages, 1464 KB  
Article
Killer Peptide-Containing Polyelectrolytic Nanocomplexes to Fight Toxoplasma gondii Infection
by Arianna Bucella, Manuela Semeraro, Laura Giovati, Lorenza Artesani, Ruggero Bettini, Annalisa Bianchera and Alice Vismarra
Pharmaceutics 2025, 17(8), 1075; https://doi.org/10.3390/pharmaceutics17081075 - 20 Aug 2025
Viewed by 240
Abstract
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites [...] Read more.
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites and have significant side effects. The antimicrobial killer peptide (KP) has interesting therapeutic potential, but its intracellular delivery is challenging; hyaluronate-based nanoparticles loaded with KP (KP-NPs) were evaluated to target T. gondii-infected cells that overexpress CD44. Methods: KP-NPs made of chitosan and hyaluronate were produced by microfluidics and were characterized for size, surface charge, encapsulation efficiency, and stability under stress conditions. After excluding their toxicity, their activity was tested in vitro against Candida albicans and T. gondii as free tachyzoite or in infected human foreskin fibroblasts (HFFs). Results: KP was efficiently encapsulated in nanoparticles and protected from harsh acidic conditions at high temperature. Preliminary in vitro testing against C. albicans showed that, at the lowest candidacidal concentration of KP (2.5 μg/mL), KP-NPs killed 90.97% of yeast cells. KP itself proved to be non-toxic for HFFs as host cells and effective against T. gondii. Comparable results were obtained for KP-NPs and blank nanoparticles (BLK-NPs), with no observed toxicity to host cells, confirming that encapsulation did not alter peptide efficacy. The parasiticidal effect of KP alone, as well as KP-NPs at 250 µg/mL and BLK-NPs, was confirmed through tests on free T. gondii tachyzoites. Reduction rates for the number of infected cells ranged from 66% to 90% with respect to control, while the reduction in the number of intracellular tachyzoites ranged from 66% to 80%. Interestingly, KP alone was not effective against intracellular tachyzoite, while KP-NPs maintained an efficacy comparable to the extracellular model, suggesting that particles helped the internalization of the peptide. Conclusions: Encapsulation of KP into hyaluronate/chitosan nanoparticles does not alter its activity and improves its efficacy against the intracellular parasite. Notably, BLK-NPs appeared to exhibit efficacy against the parasite on its own, without the presence of KP. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

16 pages, 1046 KB  
Systematic Review
Impacts of Mycobacterium leprae-Infection on Wild Populations of the Nine-Banded Armadillo (Dasypus novemcinctus) Species Complex: A Systematic Review
by Olivia F. Sciandra, Wesley M. Anderson, Sarah Zohdy and Kelly H. Dunning
Diversity 2025, 17(8), 582; https://doi.org/10.3390/d17080582 - 20 Aug 2025
Viewed by 255
Abstract
Leprosy is a chronically infectious disease caused by infection with Mycobacterium leprae, or the more recently discovered Mycobacterium lepromatosis. In the Americas, wild armadillos of the Dasypus genus are natural hosts. A systematic review evaluated demographics and spatiotemporal patterns of infection [...] Read more.
Leprosy is a chronically infectious disease caused by infection with Mycobacterium leprae, or the more recently discovered Mycobacterium lepromatosis. In the Americas, wild armadillos of the Dasypus genus are natural hosts. A systematic review evaluated demographics and spatiotemporal patterns of infection with leprosy-causing bacteria in wild populations of the Dasypus novemcinctus species complex. The Web of Science Core Collection, Biosis Citation Index, Dissertations and Theses, and PubMed databases, in addition to Google Scholar, were searched on 16 April 2022. 158 records were recovered, and six peer-reviewed journal articles were selected and summarized that evaluated the effects of M. leprae-infection on mortality, reproduction, age structure, and sex ratio, in addition to seasonal, annual, and spatial infection patterns. Findings indicate that infection with M. leprae has the potential to impact reproduction, mortality, and population age structure. Studies found that the pathogen does not appear to cluster in populations, but consistent temporal findings were not recovered. A limitation of this review is that there was a single reviewer, which may introduce bias. A better understanding of the impacts and distribution of leprosy in wild populations would allow for improved management recommendations for nuisance Dasypus armadillos throughout their range and limit potential zoonotic transmission. Full article
(This article belongs to the Special Issue Ecology, Behavior, and Conservation of Armadillos)
Show Figures

Figure 1

15 pages, 2923 KB  
Article
Ivermectin Identified Using a High-Throughput Screening System Exhibits Anti-Clonorchis sinensis Activity in Rats
by Soon-Ok Lee, Hyeryon Lee, Ki Back Chu, Jianhua Li, Sung-Jong Hong, Sung Soo Kim, Joo Hwan No and Fu-Shi Quan
Antibiotics 2025, 14(8), 837; https://doi.org/10.3390/antibiotics14080837 - 19 Aug 2025
Viewed by 314
Abstract
Background: Clonorchiasis, caused by the parasite Clonorchis sinensis, remains a public health concern in East Asian countries. Methods: In this study, high-throughput screening was used to analyze 320 compounds for potential inhibitory activity against Clonorchis sinensis. To ensure the selection of [...] Read more.
Background: Clonorchiasis, caused by the parasite Clonorchis sinensis, remains a public health concern in East Asian countries. Methods: In this study, high-throughput screening was used to analyze 320 compounds for potential inhibitory activity against Clonorchis sinensis. To ensure the selection of high-confidence hits, a stringent inhibition threshold of 80% was applied, leading to the identification of three active compounds: moxifloxacin, hexachlorophene, and ivermectin (IVM). Ivermectin emerged as a hit compound and was assessed for its anti-C. sinensis efficacy. Results: Ivermectin demonstrated dose-dependent trematocidal activity against C. sinensis metacercariae (CsMC) and newly excysted juveniles (CsNEJs), showing superior efficacy against CsMC and CsNEJs compared to praziquantel. To assess in vivo efficacy, rats were infected with CsMC and treated with ivermectin at 1 and 4 weeks post-infection (wpi) to target larval and adult stages, respectively. A significant worm burden reduction was observed compared to untreated control when treatment was administered at 1 wpi, showing an antiparasitic effect against larvae. Parasite-specific IgG levels and ALT/AST responses were comparable to those of the infection control group. Conclusions: These findings suggest that ivermectin may serve as a potential alternative drug targeting C. sinensis larvae. Full article
Show Figures

Figure 1

60 pages, 41709 KB  
Review
Epidemiology of Poliomyelitis in the United States and Its Recognition as an Infectious Disease from the Mid-19th Century to the Early 20th Century
by Douglas J. Lanska
Encyclopedia 2025, 5(3), 125; https://doi.org/10.3390/encyclopedia5030125 - 19 Aug 2025
Viewed by 263
Abstract
This study reviews the role of epidemiology in the United States in the late 19th and early 20th century, which led to recognition that poliomyelitis is an infectious disease and set the stage for subsequent developments in virology and immunology, the development of [...] Read more.
This study reviews the role of epidemiology in the United States in the late 19th and early 20th century, which led to recognition that poliomyelitis is an infectious disease and set the stage for subsequent developments in virology and immunology, the development of inactivated and live attenuated polio vaccines, and a dramatic worldwide decrease in poliomyelitis mortality and morbidity. Epidemiological studies in the United States were systematically reviewed from the mid-19th to early 20th centuries. Isolated cases and scattered small outbreaks of poliomyelitis in the mid-19th century led to epidemics of increasing size by the end of the century, causing public consternation, especially as the disease was considered “new” and had a predilection for young children. By the 1890s, the seasonal pattern of epidemics suggested that poliomyelitis might have an infectious etiology, but direct evidence of communicability or contagiousness was lacking, so an infectious etiology was not widely suspected until the early 20th century. Reports of bacterial isolations from spinal fluid and postmortem tissues suggested that poliomyelitis might be a bacterial disease, and simultaneous outbreaks of paralytic disease in humans and animals suggested a possible zoonotic basis. Although experimental studies showed that it was theoretically possible for flies to serve as vectors of poliovirus, and occasional cases of polio were likely caused by fly-borne transfer of poliovirus from human feces to human food, a fly abatement field trial showed convincingly that flies, whether biting or non-biting, could not explain the bulk of cases during polio epidemics. In conclusion, the early application of epidemiological evidence beginning in the late 19th century strongly suggested the infectious nature of the disease, distinct from previously identified conditions. Subsequent advances in virology and immunology from 1909 to 1954 proved that poliomyelitis was a viral disease with no natural animal host and made feasible the development of an inactivated trivalent poliovirus vaccine by Salk, and, subsequently, a live-attenuated trivalent poliovirus vaccine by Sabin. Full article
(This article belongs to the Section Medicine & Pharmacology)
Show Figures

Figure 1

18 pages, 2683 KB  
Article
Aptamer-CRISPR/Cas12a-Based Lateral Flow Technique for Visualized Rapid Detection of Endogenous Damage Factor Neu5Gc in Red Meat
by Yuxi Guo, Honglin Ren, Han Wang, Xuepeng Duan, Shuaihao Qi, Xi Yang, Chunyi Shangguan, Haosong Li, Yansong Li, Pan Hu, Qiang Lu and Shiying Lu
Foods 2025, 14(16), 2879; https://doi.org/10.3390/foods14162879 - 19 Aug 2025
Viewed by 251
Abstract
The N-glycolylneuraminic acid (Neu5Gc), a major salivary acid molecule found on the cell surface of animals such as pigs, cows, and sheep, can be metabolically incorporated into the body through consumption of animal-derived foods like red meat. This leads to an immune response [...] Read more.
The N-glycolylneuraminic acid (Neu5Gc), a major salivary acid molecule found on the cell surface of animals such as pigs, cows, and sheep, can be metabolically incorporated into the body through consumption of animal-derived foods like red meat. This leads to an immune response and chronic inflammation in individuals who do not naturally produce Neu5Gc, including humans and poultry, further increasing the risk of cancer. The trans-cleavage activity of Cas12a is activated by the recognition of the target aptamer by the crRNA, resulting in the cleavage of the dual-labeled probe. By combining this with immunochromatographic techniques, we established a chromatographic test strip assay that allows immediate on-site detection of Neu5Gc contamination in non-red meat samples devoid of Neu5Gc. Further optimization enabled specific detection within 25 min with a minimum detectable limit of 10 ng/mL. These analyses successfully detected the spiked samples and actual samples containing Neu5Gc. The developed lateral flow test strips based on aptamer-Cas12a can be utilized for detecting Neu5Gc contamination in non-red meat food products, animal bioproducts, and poultry feeds. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 302 KB  
Review
Revolutionizing Veterinary Vaccines: Overcoming Cold-Chain Barriers Through Thermostable and Novel Delivery Technologies
by Rabin Raut, Roshik Shrestha, Ayush Adhikari, Arjmand Fatima and Muhammad Naeem
Appl. Microbiol. 2025, 5(3), 83; https://doi.org/10.3390/applmicrobiol5030083 - 19 Aug 2025
Viewed by 389
Abstract
Veterinary vaccines are essential tools for controlling infectious and zoonotic diseases, safeguarding animal welfare, and ensuring global food security. However, conventional vaccines are hindered by cold-chain dependence, thermal instability, and logistical challenges, particularly in low- and middle-income countries (LMICs). This review explores next-generation [...] Read more.
Veterinary vaccines are essential tools for controlling infectious and zoonotic diseases, safeguarding animal welfare, and ensuring global food security. However, conventional vaccines are hindered by cold-chain dependence, thermal instability, and logistical challenges, particularly in low- and middle-income countries (LMICs). This review explores next-generation veterinary vaccines, emphasizing innovations in thermostability and delivery platforms to overcome these barriers. Recent advances in vaccine drying technologies, such as lyophilization and spray drying, have improved antigen stability and storage resilience, facilitating effective immunization in remote settings. Additionally, novel delivery systems, including nanoparticle-based formulations, microneedles, and mucosal routes (intranasal, aerosol, and oral), enhance vaccine efficacy, targeting immune responses at mucosal surfaces while minimizing invasiveness and cost. These approaches reduce reliance on cold-chain logistics, improve vaccine uptake, and enable large-scale deployment in field conditions. The integration of thermostable formulations with innovative delivery technologies offers scalable solutions to immunize livestock and aquatic species against major pathogens. Moreover, these strategies contribute significantly to One Health objectives by mitigating zoonotic spillovers, reducing antibiotic reliance, and supporting sustainable development through improved animal productivity. The emerging role of artificial intelligence (AI) in vaccine design—facilitating epitope prediction, formulation optimization, and rapid diagnostics—further accelerates vaccine innovation, particularly in resource-constrained environments. Collectively, the convergence of thermostability, advanced delivery systems, and AI-driven tools represents a transformative shift in veterinary vaccinology, with profound implications for public health, food systems, and global pandemic preparedness. Full article
Back to TopTop