Research on Organic and Medicinal Chemistry

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Chemical and Molecular Sciences".

Deadline for manuscript submissions: 20 November 2024 | Viewed by 1451

Special Issue Editor


E-Mail Website
Guest Editor
Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
Interests: medicinal chemistry; drug design; carbonic anhydrase; enzymology; molecular modeling

Special Issue Information

Dear Colleagues,

This Special Issue, entitled “Research on Organic and Medicinal Chemistry”, of Applied Sciences aims to collect relevant scientific contributions in these branches of chemistry, covering several areas, from the field of human health sciences to the field of energy. The ongoing challenges of our times to renovate synthetic techniques and methodologies to obtain more and more environmentally friendly procedures, but also the emergence of diseases resistant to current drug therapies, as well as poorly investigated diseases, require numerous efforts by the scientific community. Thus, research on novel reactions, bioreactors, or biocatalysts and their optimization, the identification of new targets, and the development of novel or optimized molecules (also aided by computer-aided drug design techniques) and innovative delivery systems are important for obtaining more potent and safe tools.

Dr. Alessandro Bonardi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal chemistry
  • organic chemistry
  • enzymology
  • molecular modeling
  • drug design
  • biocatalysts
  • catalysis
  • bioengineering
  • green chemistry
  • polymer chemistry

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 977 KiB  
Article
Identifying p56lck SH2 Domain Inhibitors Using Molecular Docking and In Silico Scaffold Hopping
by Priyanka Samanta and Robert J. Doerksen
Appl. Sci. 2024, 14(10), 4277; https://doi.org/10.3390/app14104277 - 17 May 2024
Abstract
Bacterial infections are the second-leading cause of death, globally. The prevalence of antibacterial resistance has kept the demand strong for the development of new and potent drug candidates. It has been demonstrated that Src protein tyrosine kinases (TKs) play an important role in [...] Read more.
Bacterial infections are the second-leading cause of death, globally. The prevalence of antibacterial resistance has kept the demand strong for the development of new and potent drug candidates. It has been demonstrated that Src protein tyrosine kinases (TKs) play an important role in the regulation of inflammatory responses to tissue injury, which can trigger the onset of several severe diseases. We carried out a search for novel Src protein TK inhibitors, commencing from reported highly potent anti-bacterial compounds obtained using the Mannich reaction, using a combination of e-pharmacophore modeling, virtual screening, ensemble docking, and core hopping. The top-scoring compounds from ligand-based virtual screening were modified using protein structure-based design approaches, and their binding to the Src homology-2 domain of p56lck TK was predicted using ensemble molecular docking. We have prepared a database of 202 small molecules and have identified six novel top hits that can be subjected to further investigation. We have also performed in silico ADMET property prediction for the hit compounds. This combined computer-aided drug design approach can serve as a starting point for identifying novel TK inhibitors that could be further subjected to in vitro studies and validation of antimicrobial activity. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
14 pages, 4345 KiB  
Article
Thermal Analysis in the Evaluation of Solid Lipid Microparticles in the Form of Aqueous Dispersion and Fine Powder
by Eliza Wolska and Géza Regdon, Jr.
Appl. Sci. 2023, 13(24), 13282; https://doi.org/10.3390/app132413282 - 15 Dec 2023
Cited by 1 | Viewed by 613
Abstract
In the presented study, an attempt was made to investigate the most important attributes of solid lipid microparticles (SLM) using thermal analysis (DSC/TG) in order to determine the importance of this technique in the research and development of lipid microparticles. Particularly interesting in [...] Read more.
In the presented study, an attempt was made to investigate the most important attributes of solid lipid microparticles (SLM) using thermal analysis (DSC/TG) in order to determine the importance of this technique in the research and development of lipid microparticles. Particularly interesting in our studies were drug–lipid interactions and modifications of the SLM matrix structure induced by the production method (the hot emulsification method) and further processing (e.g., spray drying), as well as changes occurring during the stability studies. Cyclosporine A, indomethacin and spironolactone were used as model active substances incorporated into SLM. The conducted research demonstrated the significant potential of DSC/TG, especially for the analysis of SLM in the form of fine powder. The method of sample preparation, consisting of evaporation of water at room temperature, turned out to be crucial for the DSC/TG analysis of SLM dispersion. In the case of the tested SLM, the basic and usually the only observed thermal transformation in the DSC spectrum was the endothermic peak associated with the lipid forming a microsphere matrix. This peak is the main source of information about the properties and stability of the tested SLM. The obtained results show that glyceryl behenate (Compritol) is a significantly better lipid for forming lipid microparticles than stearic acid. Although thermal transformations of the incorporated drug substances are not directly visible in the DSC spectra, their impact on the SLM properties can be assessed indirectly, based on changes in the lipid melting point and the shape of the DSC and TG peaks and curves. DSC/TG studies confirmed the lack of an effect of the spray drying process on the properties of drug-loaded SLM with Compritol. Studies have also shown up to a 2-year stability of SLM with CsA. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
Show Figures

Figure 1

Review

Jump to: Research

40 pages, 11080 KiB  
Review
Terpenes as Potential Anti-Alzheimer’s Disease Agents
by Elisabete Lima and Jorge Medeiros
Appl. Sci. 2024, 14(9), 3898; https://doi.org/10.3390/app14093898 - 2 May 2024
Viewed by 390
Abstract
Alzheimer’s disease (AD), a slowly progressive neurodegenerative disorder, is the main cause of dementia worldwide. However, currently, the approved drugs to combat AD are effective only in treating its symptoms. In fact, an efficacious treatment for this complex and multifactorial disorder remains to [...] Read more.
Alzheimer’s disease (AD), a slowly progressive neurodegenerative disorder, is the main cause of dementia worldwide. However, currently, the approved drugs to combat AD are effective only in treating its symptoms. In fact, an efficacious treatment for this complex and multifactorial disorder remains to be discovered, demanding the urgent development of new therapeutic approaches for the disease, such as the use of bioactive secondary metabolites (SMs) from natural sources. Sessile organisms, like plants, are unable to escape from adverse environmental conditions and must therefore create their own defense. Their main defense strategy is chemical defense that includes the production of an enormously diverse array of bioactive SMs, such as terpenes and their derivatives. This largest and most diverse group of plant SMs also provide the treatment of several diseases due to their broad-spectrum bioactivities, for example, anticancer, antioxidant, and anti-inflammatory properties. Thus, the evaluation of the neuroprotective potential of terpenes is imperative. It is known that the major AD clinical indications (CIs) are extracellular senile plaques of amyloid-β (Aβ) protein, intracellular hyperphosphorylated tau (τ) neurofibrillary tangles (NFTs), uncommon neuroinflammatory response, oxidative stress, and synaptic and neuronal dysfunction. Therefore, terpenes that may decrease these CIs might be used for AD treatment. Surely, terpenes targeting more than one AD pathogenic mechanism, multi-target drug ligands (MTDLs), have the potential to become a leading AD treatment. Thus, this review analyzes, for each CI, the scaffolds of the selected terpenes leading to the highest activity. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop