Water Quality Assessment of River Basins

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Quality and Contamination".

Deadline for manuscript submissions: 15 September 2024 | Viewed by 1523

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
Interests: water quality assessment; source analysis; migration and transformation of biomass

Special Issue Information

Dear Colleagues,

This Special Issue, titled “Water Quality Assessment of River Basins”, delves into the state-of-the-art technologies and pragmatic strategies for evaluating water quality across numerous aquatic systems within a basin, encompassing rivers, lakes, and groundwater. It spans the spectrum from foundational water quality monitoring practices to sophisticated data analysis methodologies, and it elucidates the implementation of these tools within the context of water environment management. The content encompasses the quantitative analysis of water quality parameters, the study of pollutant migration and transformation processes, the tracing of pollutant sources, the development and application of water quality models, and the evaluation of the ecological impacts resulting from changes in water quality. These studies not only contribute to a deeper understanding of the water quality dynamics within river basins but also furnish a scientific foundation for the development of effective water quality conservation measures. The aim of this Special Issue is to facilitate a comprehensive exchange among water environment scientists, engineers, policymakers, and water resource managers, collectively driving forward the protection of river basin water quality and the pursuit of sustainable development.

Prof. Dr. Qianqian Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • water quality
  • hydrochemistry
  • pollution sources
  • source analysis
  • assessment methods
  • isotope technology
  • machine learning
  • multivariate statistical techniques
  • model

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3706 KiB  
Article
Assessment of Microplastic Pollution in River Ecosystems: Effect of Land Use and Biotic Indices
by David Gutiérrez-Rial, Iria Villar, Romina Álvarez-Troncoso, Benedicto Soto, Salustiano Mato and Josefina Garrido
Water 2024, 16(10), 1369; https://doi.org/10.3390/w16101369 - 11 May 2024
Viewed by 472
Abstract
The proximity of freshwater ecosystems to anthropogenic activities makes them one of the most threatened environments by plastic pollution in the form of microplastics (MPs). Therefore, it is crucial to identify the primary drivers of MP dynamics in rivers to enhance their management. [...] Read more.
The proximity of freshwater ecosystems to anthropogenic activities makes them one of the most threatened environments by plastic pollution in the form of microplastics (MPs). Therefore, it is crucial to identify the primary drivers of MP dynamics in rivers to enhance their management. This work analyzed the concentration of MPs in water and sediments and evaluated the influence of land use and its relationship with the main biotic indices employed to assess the water quality of rivers. This research was carried out in four different catchments, with three sampling points established in each river basin. The results revealed that MPs were ubiquitous across all locations, with concentrations ranging from 0.10 to 35.22 items m−3 in waters and from 26 to 643 items Kg−1 in sediments. The highest concentration of MPs both in water and sediments were found in the Lagares River (35.22 items m−3 and 643 items Kg−1), while the lowest concentrations were found in the Miñor River for water (0.10 items m−3) and Tea River for sediments (138 items Kg−1). Urbanization degree was identified as the primary driver of MP pollution in water, whereas population density correlated with sediment pollution levels. These findings explain the elevated MPs abundance in the more urbanized and populated Gafos and Lagares rivers compared to the relatively pristine Miñor and Tea rivers. Furthermore, the presence of MPs in sediments was found to negatively impact the most sensitive benthic macroinvertebrate taxa, as evidenced by lower values of the IASPT and EPT indices at sampling points with higher sediment MPs concentrations (Gafos and Lagares). Full article
(This article belongs to the Special Issue Water Quality Assessment of River Basins)
Show Figures

Figure 1

13 pages, 934 KiB  
Article
Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices
by Tosin Sarah Fashagba, Madani Bessedik, Nadia Badr ElSayed, Chérifa Abdelbaki and Navneet Kumar
Water 2024, 16(9), 1291; https://doi.org/10.3390/w16091291 - 1 May 2024
Viewed by 813
Abstract
Dams are regarded as crucial pieces of structure that store water for irrigation and municipal uses. Given their vital role, the dam’s water quality assessment is considered to be an important criterion and requires constant monitoring. In this research, we attempted to use [...] Read more.
Dams are regarded as crucial pieces of structure that store water for irrigation and municipal uses. Given their vital role, the dam’s water quality assessment is considered to be an important criterion and requires constant monitoring. In this research, we attempted to use two water quality indices (WQIs) methods to assess the water quality of the Keddara Dam, which is located on the Boudouaou River, Algeria, using eleven water quality parameters (temperature, pH, conductivity, turbidity, total suspended solids (TSS), full alkalimetric title (TAC), hydrometric title (TH), nitrite ions (NO2−), nitrate ions (NO3−), ammonium ions (NH4+), and phosphate ions (PO43−)) for data recorded from 29 December 2018 to 3 June 2021. Application of The Canadian Council of Ministers of the Environment (CCME) WQIs and the Weighted Arithmetic Method (WAM) indicated that the Keddara Dam’s water quality parameters were within the WHO’s permissible level, except for the conductivity and turbidity values. The results of the CCME WQI ranged from acceptable (81.92) to excellent (95.08) quality, whereas the WAM WQI ranged from 9.52 to 17.77, indicating excellent quality. This demonstrates that the Keddara Dam is appropriate for agriculture and municipal use. The water quality indices (WQIs) methods are recommended as valuable tools that allow both the public and decision-makers to comprehend and manage the water quality of any aquatic environment by providing flexibility in choosing variables. Full article
(This article belongs to the Special Issue Water Quality Assessment of River Basins)
Show Figures

Figure 1

Back to TopTop