Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media
Abstract
:1. Introduction
2. Theoretical Analysis of CFWM Process
3. Experimental Section
3.1. Experimental Setup
3.2. Generation of Wavelength-Tunable Multicolored Sidebands
3.2.1. Generation of wavelength-tunable sidebands by changing crossing angle
3.2.2. Generation of wavelength-tunable sidebands by simply replacing the bulk medium
3.3. Improvement of the Sideband Pulse Energy up to a uJ Level
3.4. Generation of Sub-20fs Sidebands Using Chirped Incident Pulses
3.4.1. Principle of the experiment
3.4.2. Generation of 15-fs multicolored femtosecond pulses
3.4.3. Generation of self-compressed ∼20-fs pulses
3.5. Spatial Profile and Power Stability of Multicolored Sidebands
3.6. Generation of Multicolored Sidebands in BBO Crystal and Sapphire plate
3.6.1. Multicolored sidebands generated in BBO
3.6.2. Multicolored sidebands generated in sapphire plate
3.7. 2-D Multicolored Sidebands Arrays Generated in Sapphire plate
3.8. Simultaneous Compression and Amplification of the Sidebands in a Bulk Medium
3.8.1. Principle of the experiment
3.8.2. Experiment results and discussion
4. Theoretical Calculation of the CFWM Process
5. Conclusions and Prospects
Acknowledgments
References and Notes
- Zewail, A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 2000, 104, 5660–5694. [Google Scholar]
- Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 1st ed; Springer: Berlin, Germany, 1999. [Google Scholar]
- Kobayashi, T.; Okada, T.; Nelson, K. A.; De Silvestri, S. Ultrafast Phenomena XIV, 1st ed; Springer: New York, NY, USA, 2004. [Google Scholar]
- Kobayashi, T.; Saito, T.; Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 2001, 414, 531–534. [Google Scholar]
- Cerullo, G.; Polli, D.; Lanzani, G.; De Silvestri, S.; Hashimoto, H.; Cogdell, R.J. Photosynthetic light harvesting by carotenoids: detection of an intermediate excited states. Science 2002, 298, 2395–2398. [Google Scholar]
- Adachi, S.; Kobryanskii, V.M.; Kobayashi, T. Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-5-fs optical pulses. Phys. Rev. Lett 2002, 89, 27401. [Google Scholar]
- Kobayashi, T.; Shirakawa, A.; Fuji, T. Sub-5-fs transform-limited visible pulse source and its application to real-time spectroscopy. IEEE J. Select. Topics Quantum Electron 2001, 7, 525–538. [Google Scholar]
- Zgadzaj, R.; Gaul, E.; Matlis, N.H.; Shvets, G.; Downer, M.C. Femtosecond pump-probe study of preformed plasma channels. J. Opt. Soc. Am. B 2004, 21, 1559–1567. [Google Scholar]
- Pestov, D.; Murawski, R.K.; Ariunbold, G.O.; Wang, X.; Zhi, M.C.; Sokolov, A.V.; Sautenkov, V.A.; Rostovtsev, Y.V.; Dogariu, A.; Huang, Y.; Scully, M.O. Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 2007, 316, 265–268. [Google Scholar]
- Hochstrasser, R.M. Two-dimensional spectroscopy at infrared and optical frequencies. PNAS 2007, 104, 14190–14196. [Google Scholar]
- Li, D.; Zheng, W.; Qu, J.Y. Two-photon autofluorescence microscopy of multicolor excitation. Opt. Lett 2009, 34, 202–204. [Google Scholar]
- Quentmeier, S.; Denicke, S.; Ehers, J.E.; Niesner, R.A.; Gericke, K.H. Two-color two photon excitation using femtosecond laser pulses. J. Phys. Chem. B 2008, 112, 5768–5773. [Google Scholar]
- Donnert, G.; Keller, J.; Wurm, C.A.; Rizzoli, S.O.; Westphal, V.; Schönle, A.; Jahn, R.; Jakobs, S.; Eggeling, C.; Hell, S.W. Two-color far-field fluorescence nanoscopy. Biophys. Lett 2007, L67–L69. [Google Scholar]
- Cerullo, G.; De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Inst 2003, 74, 1–18. [Google Scholar]
- Kozma, I.; Baum, P.; Lochbrunner, S.; Riedle, E. Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing. Opt. Express 2003, 11, 3110–3115. [Google Scholar]
- Baum, P.; Lochbrunner, S.; Riedle, E. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Opt. Lett 2004, 29, 1686–1688. [Google Scholar]
- Baltuška, A.; Fuji, T.; Kobayashi, T. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett 2002, 27, 306–308. [Google Scholar]
- Gruetzmacher, J.A.; Scherer, N.F. Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media. Rev. Sci. Instrum 2002, 73, 2227–2236. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed; Academic Press: San Diego, CA, USA, 2007; pp. 368–418. [Google Scholar]
- Théberge, F.; Aközbek, N.; Liu, W.; Becker, A.; Chin, S.L. Tunable ultrashort laser pulses generated through filamentation in gases. Phys. Rev. Lett 2006, 97, 023904. [Google Scholar]
- Fuji, T.; Horio, T.; Suzuki, T. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas. Opt. Lett 2007, 32, 2481–2483. [Google Scholar]
- Fuji, T.; Suzuki, T. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air. Opt. Lett 2007, 32, 3330–3332. [Google Scholar]
- Durfee, G.C., III; Backus, S.; Murnane, M.M.; Kapteyn, C.H. Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves. Opt. Lett 1997, 22, 1565–1567. [Google Scholar]
- Misoguti, L.; Backus, S.; Durfee, C.G.; Bartels, R.; Murnane, M.M.; Kapteyn, H.C. Generation of broadband VUV light using third-order cascaded processes. Phys. Rev. Lett 2001, 87, 013601. [Google Scholar]
- Okamoto, H.; Tatsumi, M. Generation of ultrashort light pulses in the mid-infrared (3000-800 cm−1) by four-wave mixing. Opt. Commun 1995, 121, 63–68. [Google Scholar]
- Nienhuys, H.K.; Planken, P.C.M.; van Santen, R.A.; Bakker, H.J. Generation of mid-infrared pulses by χ(3) difference frequency generation in CaF2 and BaF2. Opt. Lett 2001, 26, 1350–1352. [Google Scholar]
- Crespo, H.; Mendonça, J.T.; Dos Santos, A. Cascaded highly nondegenerate four-wave-mixing phenomenon in transparent isotropic condensed media. Opt. Lett 2000, 25, 829–831. [Google Scholar]
- Weigand, R.; Mendonca, J.T.; Crespo, H. Cascaded nondegenerate four-wave mixing technique for high-power single-cycle pulse synthesis in the visible and ultraviolet ranges. Phys. Rev. A 2009, 79, 063838. [Google Scholar]
- Silva, J.L.; Weigand, R.; Crespo, H. Octave-spanning spectra and pulse synthesis by non-degenerate cascaded four-wave mixing. Opt. Lett 2009, 34, 2489–2491. [Google Scholar]
- Liu, J.; Kobayashi, T. Wavelength-tunable multicolored femtosecond laser pulse generation in fused silica glass. Opt. Lett 2009, 34, 1066–1068. [Google Scholar]
- Liu, J.; Kobayashi, T. Generation of uJ-level multicolored femtosecond laser pulses using cascaded four-wave mixing. Opt. Express 2009, 17, 4984–4990. [Google Scholar]
- Liu, J.; Kobayashi, T. Generation of sub-20-fs multicolor laser pulses using cascaded four-wave mixing with chirped incident pulses. Opt. Lett 2009, 34, 2402–2404. [Google Scholar]
- Liu, J.; Kobayashi, T. Cascaded four-wave mixing in transparent bulk media. Opt. Commun 2010, 283, 1114–1123. [Google Scholar]
- Liu, J.; Kobayashi, T. Cascaded four-wave mixing and multicolored arrays generation in a sapphire plate by using two crossing beams of femtosecond laser. Opt. Express 2008, 16, 22119–22125. [Google Scholar]
- Liu, J.; Kobayashi, T.; Wang, Z.G. Generation of broadband two-dimensional multicolored arrays in a sapphire plate. Opt. Express 2009, 17, 9226–9234. [Google Scholar]
- Zhi, M.; Sokolov, A.V. Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses. Opt. Lett 2007, 32, 2251–2253. [Google Scholar]
- Zhi, M.; Sokolov, A.V. Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses. New J. Phys 2008, 10, 025032. [Google Scholar]
- Matsubara, E.; Sekikawa, T.; Yamashita, M. Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature. Appl. Phys. Lett 2008, 92, 071104. [Google Scholar]
- Matsuki, H.; Inoue, K.; Hanamura, E. Multiple coherent anti-Stokes Raman scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses. Phys. Rev. B 2007, 75, 024102. [Google Scholar]
- Inoue, K.; Kato, J.; Hanamura, E.; Matsuki, H.; Matsubara, E. Broadband coherent radiation based on peculiar multiple Raman scattering by laser-induced phonon grating in TiO2. Phys. Rev. B 2007, 76, 041101(R). [Google Scholar]
- Matsubara, E.; Inoue, K.; Hanamura, E. Violation of Raman selection rules induced by two femtosecond laser pulses in KTaO3. Phys. Rev. B 2005, 72, 134101. [Google Scholar]
- Matsubara, E.; Kawamoto, Y.; Sekikawa, T.; Yamashita, M. Generation of ultrashort optical pulses in the 10 fs regime using multicolor Raman sidebands in KTaO3. Opt. Lett 2009, 34, 1837–1839. [Google Scholar]
- Takahashi, J.; Matsubara, E.; Arima, T.; Hanamura, E. Coherent multistep anti-Stokes and stimulated Raman scattering associated with third harmonics in YFeO3 crystals. Phys. Rev. B 2003, 68, 155102. [Google Scholar]
- Takahashi, J.; Keisuke, M.; Toshirou, Y. Raman lasing and cascaded coherent anti-Stokes Raman scattering of a two-phonon Raman band. Opt. Lett 2006, 31, 1501–1503. [Google Scholar]
- Zhi, M.; Wang, X.; Sokolov, A.V. Broadband coherent light generation in diamond driven by femtosecond pulses. Opt. Express 2008, 16, 12139–12147. [Google Scholar]
- Liu, J.; Zhang, J.; Kobayashi, T. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses. Opt. Lett 2008, 33, 1494–1496. [Google Scholar]
- Valtna, H.; Tamošauskas, G.; Dubietis, A.; Piskarskas, A. High-energy broadband four-wave optical parametric amplification in bulk fused silica. Opt. Lett 2008, 33, 971–973. [Google Scholar]
- Dubietis, A.; Tamošauskas, G.; Polesana, P.; Valiulis, G.; Valtna, H.; Faccio, D.; Trapani, P. Di; Piskarskas, A. Highly efficient four-wave parametric amplification in transparent bulk Kerr medium. Opt. Express 2007, 15, 11126–11132. [Google Scholar]
- Penzkofer, A.; Lehmeier, H.J. Theoretical investigation of noncollinear phase-matched parametric four-photon amplification of ultrashort light pulses in isotropic media. Opt. Quant. Electron 1993, 25, 815–844. [Google Scholar]
- Liu, J.; Kida, Y.; Teramoto, T.; Kobayashi, T. Simultaneous compression and amplification of a laser pulse in a glass plate. Opt. Express 2010, 18, 4665–4672. [Google Scholar]
- Darginavičius, J.; Tamošauskas, G.; Valiulis, G.; Dubietis, A. Broadband four-wave optical parametric amplification in bulk isotropic media in the ultraviolet. Opt. Commun 2009, 282, 2995–2999. [Google Scholar]
- Dubietis, A.; Darginavičius, J.; Tamošauskas, G.; Valiulis, G.; Piskarskas, A. Generation and amplification of ultrashort UV pulses via parametric four-wave interactions in transparent solid-state media. Lithuanian J. Phys 2009, 49, 421–431. [Google Scholar]
- Faccio, D.; Grün, A.; Bates, K.P.; Chalus, O.; Biegert, J. Optical amplification in the near-infrared in gas-filled hollow-core fibers. Opt. Lett 2009, 34, 2918–2920. [Google Scholar]
- Trebino, R. Frequency-Resolved Optical Grating: The Measurement of Ultrashort Laser Pulses; Kluwer Academic Publishers: Norwell, MA, USA, 2000. [Google Scholar]
- Lundquist, P.B.; Andersen, D.R.; Kivshar, Y.S. Multicolor solitons due to four-wave mixing. Phys. Rev. E 1998, 57, 3551–3555. [Google Scholar]
- Fanjoux, G.; Michaud, J.; Delqué, M.; Mailotte, H.; Sylvestre, T. Generation of multicolor vector Kerr solitons by cross-phase modulation, four-wave mixing, and stimulated Raman scattering. Opt. Lett 2006, 31, 3480–3482. [Google Scholar]
- Lü, B.D. Beam Characterization, Propagation and Trans-Formation, Resonator Technology and Physics [M], 3rd ed; Higher Education Press: Beijing, China, 2002; pp. 82–83. [Google Scholar]
- Fu, Y.; Feng, G.; Zhang, D.; Chen, J.; Zhou, S. Beam quality factor of mixed modes emerging from a multimode step-index fiber. Optik 2010, 121, 452–456. [Google Scholar]
- You, J.L.; Jiang, G.C.; Hou, H.Y.; Wu, Y.Q.; Chen, H.; Xu, K.D. Temperature-dependent Raman spectra and microstructrue of Barium Metaborate crystal and its melts. Chin. Phys.Lett 2002, 19, 205–207. [Google Scholar]
- Kartazaev, V.; Alfano, R.R. Polarization properties of SC generated in CaF2. Opt. Commun 2008, 281, 463–468. [Google Scholar]
- Alfano, R.R.; Li, Q.X.; Jimbo, T.; Manassah, J.T.; Ho, P.P. Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse. Opt. Lett 1986, 11, 626–628. [Google Scholar]
- Alfano, R.R.; Baldeck, P.L.; Ho, P.P. Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials. J. Opt. Soc. Am. B 1989, 6, 824–829. [Google Scholar]
- Baldeck, P.L.; Alfano, R.R.; Agrawal, G.P. Induced-frequency shift of copropagating ultrafast optical pulses. Appl. Phys. Lett 1988, 52, 1939–1941. [Google Scholar]
- Spanner, M.; Ivanov, M.Y.; Kalosha, V.; Hermann, J.; Wiersma, D.A.; Pshenichnikov, M. Tunable optimal compression of ultrabroadband pulses by cross-phase modulation. Opt. Lett 2003, 28, 749–751. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed; Academic Press: San Diego, CA, USA, 2007; pp. 227–267. [Google Scholar]
- Baltuška, A.; Pshenichnikov, M.S.; Wiersma, D.A. Second-harmonic generation frequency-resolved optical gating in the single-cycle regime. IEEE J. Quantum Electron 1999, 35, 459–478. [Google Scholar]
- Röser, F.; Eidam, T.; Rothhardt, J.; Schmidt, O.; Schimpf, D.N.; Limpert, J.; Tünnermann, A. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. Opt. Lett 2007, 32, 3495–3497. [Google Scholar]
- Deng, Y.; Chien, C.Y.; Fidric, B.G.; Kafka, J.D. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier. Opt. Lett 2009, 34, 3469–3471. [Google Scholar]
μW | CaF2 | Fused silica | BK7 | Sapphire plate | BBO |
---|---|---|---|---|---|
AS1 | 480 | 700 | 715 | 750 | 780 |
AS2 | 210 | 315 | 295 | 210 | 135 |
AS3 | 125 | 90 | 60 | 40 | 10 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, J.; Kobayashi, T. Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media. Sensors 2010, 10, 4296-4341. https://doi.org/10.3390/s100504296
Liu J, Kobayashi T. Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media. Sensors. 2010; 10(5):4296-4341. https://doi.org/10.3390/s100504296
Chicago/Turabian StyleLiu, Jun, and Takayoshi Kobayashi. 2010. "Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media" Sensors 10, no. 5: 4296-4341. https://doi.org/10.3390/s100504296