DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease
Abstract
:1. Introduction
2. What Are DNA-Based Nanobiosensors
3. DNA-Based Nanobiosensors for Detection of Infectious Diseases
3.1. Optical Nanobiosensors
3.2. Label-Based Electrochemical Nanobiosensors
3.3. Label-Free Electrochemical Nanobiosensors
3.4. DNA-Based Piezoelectric Biosensors
4. Diagnosis of Genetic Diseases with DNA-Based Nanobiosensors
5. Applications of DNA-Based Nanobiosensors in Management of Cancer
6. DNA-Based Nanobiosensors for Detecting Markers of Immunodeficiency Related Diseases
Immobilization Matrix | Detected Microorganisms/Protein/Virus | Linearity | Detection Limit | Shelf Life | Sensitivity | Response | Reference |
---|---|---|---|---|---|---|---|
Ag nanoparticles | M. tuberculosis | 0.1–7.0 fM | 0.03 f M | - | - | - | He et al. 2011 [39] |
ZnO nanoparticles | Neisseria gonorrhea | 0.000524 fmol–0.524 nmol | 0.000704 fmol | - | - | 60 s | Ansari et al. 2009 [51] |
Au electrode | Nisseria meningitides | 7–42 ng/mL | - | 4 months | 115.8 µA/ng | 60 s | Patel and Malhotra, 2010 [52] |
PANI nanoparticles | Neisseria gonorrhea | 1 × 10−16 to 1 × 10−6 M | 0.5 × 10−15 M | - | - | 60 s | Singh et al. 2009 [53] |
Chitosan-iron oxide nano-composite | Neisseria gonorrhea | 1 × 10−16 M to 1 × 10−6 M | 1 × 10−15 M | 4 months | - | 60 s | Singh et al. 2011 [54] |
Chitosan-MWCNT | Neisseria gonorrhea | 1 × 10−6 M to 1 × 10−17 M | 1 × 10−16 M | 4 months | - | 60 s | Singh et al. 2010 [56] |
Polyaniline/carbon nanotubes | Neisseria gonorrhea | 1 × 10−6 M to 1T10S17 M | 1.2 × 10−17 M | 75 days | - | 60 s | Singh et al. 2010 [57] |
ZrO2 | Mycobacterium tuberculosis | 640–0.065 ng/μL | 0.065 ng/μL | 4 months | 7.9 × 10−7μL/ng | 60 s | Das et al. 2010 [62] |
Chitosan-ZrO2 | Mycobacterium tuberculosis | - | 0.00078 μM | 18 weeks | 6.38 × 10−6 AμM−1 | 60 s | Das et al. 2011 [63] |
ZrO2-MWCNT | Mycobacterium tuberculosis | 1 × 10−2 to 1 × 10−8 mM | 0.01 nM | - | - | - | Das et al. 2011 [64] |
MWCNT | influenza virus | - | 0.5 nM | - | - | 20 min | Tam et al. 2009 [65] |
NiO nanoparticles | taxon: 32630 | 4 × 10−10 M to 1 × 10−8 M | 68 pM | - | 34.32 nA nM−1 | - | Noorbakhsh et al. 2011 [126] |
7. DNA-Based Nanobiosensors for Diagnosis of Neurological Diseases
8. DNA-Based Cellular Bioimaging
9. Nanobiosensing of Toxicity
Company Name | Platform | Detection Mechanism | Website |
---|---|---|---|
Nanogen | Nanochip | Electrochemical | http://www.nanogen.com |
Affymetrix, Santa Clara, CA, USA | GeneChip® technology either for whole genome or subset gene analysis | Fluorescence | http://www.affymetrix.com |
ADIAGENE, Bruz, France | Kits for PCR technique (Polymerase Chain Reaction and DNA testing technology for diagnosis of animal diseases | fluorescent probes technology | http://www.adiagene.com |
Agendia, Amsterdam, Netherland | Genomics platform for tumor gene expression profiling and microarray assay tests that can determine whether an individual patient is at high or low risk for breast or colon cancers recurrence, helping physicians more accurately tailor cancer treatments. | Fluorescence | http://www.agendia.com |
Agilent Technologies, Santa Clara, CA, USA | 1- DNA 500 LabChip® kit provides sizing and quantitation of dsDNA fragments ranging from 25–500 bp. | Fluorescence | http://www.agilent.com |
2- Dual-mode gene expressionmicroarray platform providing one- and two-color gene expression capabilities. | |||
3- 2100 Bioanalyzer is a microfluidics-(electrophoresis and flow cytometry) based platform for the analysis of DNA, RNA, proteins and cells. | |||
Beckman Coulter Genomics | DNA variation analysis, whole exome, gene genotyping using next generation sequencing and targeted or individual SNP genotyping using real-time PCR or Sanger sequencing. | Fluorescence | http://www.beckmangenomics.com |
Celera Group, Rockville, MD, USA | Genetic diagnostic test that are used to detect, characterize, monitor and select treatment for disease, | Fluorescence | http://www.celera.com |
CLONDIAG Chip Technologies, Jena, Germany | Genetic in vitro diagnostics at the point-of-care and in the laboratory based using array tube or arraystrip | Optical | http://www.clondiag.com |
Roche NimbleGen, Madison, WI, USA | CGH, ChIP-chip, DNA Methylation, AccuSNP, CGS, and Gene Expression microarrays | Optical | http://www.nimblegen.com |
CombiMatrix Diagnostics, USA | CombiMatrix 12K ElectraSense® microarray offer DNA-based genomic testing services in the areas of (1) Prenatal and Pediatric developmental disorders and (2) Oncology | CMOS | http://www.combimatrix.com |
CustomArray, Inc. Bothell, WA, USA | ElectraSense microarray; Arrays can be synthesized automatically on the instrument using either the 4 × 2 k™, 12 k™, or 90 k™ array chips. In situ synthesis on up to 32 arrays (for 4 × 2 k format) or 8 arrays (for other formats) | electrochemical | http://customarrayinc.com |
Illumina, San Diego, CA | Bar coded microbeads | Fluorescence | http://www.illumina.com |
Arrayit Corporation, Sunnyvale, CA, USA | Arrayit VIP™ (Variation Identification Platform™) technology Universal microarray analysis platform for nucleic acid-based genetic screening, testing, diagnostics, genotyping and single nucleotide polymorphism (SNP) analysis. | Fluorescence | http://www.arrayit.com |
Applied Biosystems, Foster City, CA, USA | Expression Array System; Microarray assays based on a chemiluminescent detection | chemiluminescent | wwwappliedbiosystems.com |
DNAmicroarray, Inc. | pre-spotted high density DNAmicroarrays | http://www.dnamicroarray.com | |
Eppendorf Biochip Systems, Hamburg, Germany | Offer microarray solutions for routine applications, including DNAmicroarrays for gene expression analysis, detection of infectious agents, GMOs in food and feed and miRNA analysis. | http://www.eppendorf-biochip.com | |
Genisphere LLC, Hatfield, PA, USA | 3DNA™ microarray detection kits include the Array 350™ Kit—an indirect labeling system for cDNA and oligo arrays, the Array 350RP™ | Fluorescence | http://genisphere.com |
Infineon Technologies, Munich, Germany | CMOS based platform | CMOS-based DNA sensor chips with fully electronic readout | http://www.infineon.com |
DNA Electronics Ltd, London, UK | Genalysis® | ion-sensitive field effect transistors (ISFETs) based | http://dnae.co.uk |
Oxford Nanopore Technologies® | developed the GridION™ system and miniaturisedMinION™ devices for electronic single molecule sensing | nanopores to analyse single molecules including DNA/RNA and proteins | http://www.nanoporetech.com |
10. Conclusions/Outlook
Acknowledgments
Conflicts of Interest
References
- Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm. 2011, 8, 2101–2141. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, B.D.; Chaube, A. Biosensors for clinical diagnostics industry. Sens. Actuators B Chem. 2003, 91, 117–126. [Google Scholar] [CrossRef]
- Annelies, B.; Dirk, B.; Michel, L. Clinical and analytical performance of the Accu-chek Inform point-of-care glucose water. Point Care 2005, 4, 36–40. [Google Scholar]
- Anjum, V.; Pundir, C.S. Biosensors: Future analytical tools. Sens. Transducers 2007, 76, 937–944. [Google Scholar]
- Abu-Salah, K.M.; Ansari, A.A.; Alrokayan, S.A. DNA-based applications in nanobiotechnology. J. Biomed. Biotech. 2010. [Google Scholar] [CrossRef] [PubMed]
- Abu-Salah, K.M.; Alrokayan, S.A.; Khan, M.N.; Ansari, A.A. Nanomaterials as analytical tools for genosensors. Sensors 2010, 10, 963–993. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, R.; Eita, M.; Barrefelt, A.; Ye, F.; Jain, H.; Fares, M.; Lundin, A.; Crona, M.; Abu-Salah, K.M.; Muhammed, M.; Hassan, M. Thermostable luciferase from luciola cruciate for imaging of carbon nanotubes and carbon nanotubes carrying doxorubicin using in vivo imaging system. Nano Lett. 2013, 13, 1393–1398. [Google Scholar] [PubMed]
- Eden-Firstenberg, R.; Schaertel, B.J. Biosensor in the food industry: Present and future. J. Food Prot. 1988, 51, 811–820. [Google Scholar]
- Lindner, D. The μchemLab TM project: Micro total analysis system R & D at Sandia National Laboratories. Lab Chip 2001, 1, 15–19. [Google Scholar]
- Burkle, F.M. Measures of effectiveness in large scale bioterrorism events. Prehosp. Disaster Med. 2003, 18, 258–262. [Google Scholar] [PubMed]
- Maseini, M. Affinity electrochemical biosensors for pollution control. Pure Appl. Chem. 2001, 73, 23–30. [Google Scholar] [CrossRef]
- Mouffouk, F.; da Costa, A.M.R.; Martins, J.; Zourob, M.; Abu-Salah, K.M.; Alrokayan, S.A. Micelle Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric. Biosens. Bioelectron. 2011, 26, 3517–3523. [Google Scholar] [CrossRef] [PubMed]
- Prummond, T.G. Electrochemical DNA Sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Umek, R.M.; Lin, S.W.; Vielmetter, J.; Terbrueggen, R.H.; Irvine, B.; Yu, C.J.; Kayyem, J.F.; Yowanto, H.; Blackburn, G.F.; Farkas, D.H.; et al. Electronic detection of nucleic acids a versatile platform for molecular diagnostics. J. Mol. Diagn. 2001, 3, 74–84. [Google Scholar] [CrossRef]
- Junhui, Z.; Hong, C.; Ruifu, Y. DNA based biosensors. Biotechnol. Adv. 1997, 15, 43–58. [Google Scholar]
- Arora, K.; Chand, S.; Malhotra, B.D. Recent developments in biomolecular electronics techniques for food pathogens. Anal. Chim Acta 2006, 568, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.; Prabhakar, N.; Chand, S.; Malhotra, B.D. Ultrasensitive DNA hybridization biosensor based on polyaniline. Biosens. Bioelectron. 2007, 23, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, N.; Arora, K.; Singh, S.P.; Pandey, M.K.; Singh, H.; Malhotra, B.D. Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. Anal. Chim. Acta 2007, 589, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Berdat, D.; Marin, A.; Herrera, F.; Gijs, M.A.M. DNA biosensors using fluorescence microscopy and impedance spectroscopy. Sens. Actuators 2006, 118, 53–59. [Google Scholar] [CrossRef]
- Sassolas, A.; Beatrice, D.; Leca-Bouvier; Blum, L.J. DNA Biosensors and Microarrays. Chem. Rev. 2008, 108, 109–139. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Kesman, K.; Mesie, B.; Akarea, U.S.; Osoz, M. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequence related to Hepatitis B Virus. Anal. Chim. Acta 2000, 423, 139–149. [Google Scholar] [CrossRef]
- Campbell, C.N.; Gal, D.; Cristler, N.; Banditrat, C.; Heller, A. Enzyme amplified amperometric sandwich test for RNA and DNA. Anal. Chem. 2002, 74, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Millan, K.M.; Mikkelsen, S.R. Sequence selection biosensor for DNA based on electroactive hybridization indicators. Anal. Chem. 1993, 65, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Ivniski, D.; Hamid, I.A.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1999, 14, 559–624. [Google Scholar]
- Berney, H.; West, J.; Haefele, E.; Alderman, J.; Lane, W.; Collins, J.K. DNA diagnostic biosensor development, characterization and performance. Sens. Actuators B 2000, 68, 100–108. [Google Scholar] [CrossRef]
- Ansari, A.A.; Solanki, P.R.; Kaushik, A.; Malhotra, B.D. Recent advances in nanostructured metal oxides based electrochemical biosensors for clinical diagnostics. In Nanostructured Materials for Electrochemical Biosensors; Science Publishers, Inc.: New Delhi, India, 2009. [Google Scholar]
- Yogeshwaran, U.; Kumar, S.; Chen, S. Nanostructured Material for Electrochemical Biosensors; Nova Science Publishers: Hauppauge, NY, USA, 2009; ISBN 978-1-60741-706-4. [Google Scholar]
- Wang, J.; Xu, D.K.; Kawde, A.N.; Polsky, R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 2001, 73, 5576–5581. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.C.; Cheu, C.Y.; Hsu, H.C.; Cheu, L.C.; Shiesh, S.C.; Lin, X.Z. Amperometric detection of morphine at a prussian blue modified indium tin oxide electrode. Biosens. Bioelectron. 2004, 20, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bunde, R.L.; Jarvi, E.J.; Rosentreter, J.J. Piezoelectric quartz crystal biosensors. Talanta 1998, 46, 1223–1236. [Google Scholar] [CrossRef]
- Xie, B.; Ramanathan, K.; Danielsson, B. Mini/micro thermal biosensors and other related devices for biochemical/clinical analysis and monitoring. TRAC-TREND 2000, 19, 340–349. [Google Scholar] [CrossRef]
- Motorola Life Sciences Inc. Available online: http://www.motorola.com/Lifesciences (accessed on 15 May 2014).
- Toshiba Corporation. Available online: http://www.dna-chip.toshiba.co.jp/eng/ (accessed on 15 May 2014).
- Tang, B.; Cao, L.; Xu, K.; Zhuo, L.; Ge, J.; Li, Q.; Yu, L. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chemistry 2008, 14, 3637–3644. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.; Bahshi, L.; Freeman, R.; Willner, I. Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angew. Chem. Int. Ed. 2008, 47, 1676–1679. [Google Scholar] [CrossRef] [PubMed]
- Dyadyusha, L.; Yin, H.; Jaiswal, S.; Brown, T.; Baumber, J.J.; Booy, F.P.; Melvin, T. Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem. Commun. 2005, 7, 3201–3203. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Pang, X.F.; Zhang, Y.Y. Recent advances in fiber-optic DNA biosensors. J. Biomed. Sci. Eng. 2009, 2, 312–317. [Google Scholar] [CrossRef]
- Ho, Y.P.; Kung, M.C.; Yang, S.; Wang, T.H. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett. 2005, 5, 1693–1697. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, D.; He, X.; Cui, H. One-pot synthesis of luminol functionalized silver nanoparticles with chemiluminescence activity for ultrasensitive DNA sensing. Chem. Commun. 2011, 47, 10692–10694. [Google Scholar] [CrossRef] [PubMed]
- Shanmukh, S.; Jones, L.; Driskell, J.; Zhao, Y.; Dluhy, R.; Trippa, R.A. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett. 2006, 6, 2630–2636. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Willner, I. Biomolecule-functionalized carbon-nanotubes: Applications in nanobioelectronics. ChemPhysChem 2004, 5, 1084–1104. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.R. Electrochemical biosensors for DNA sequence detection. Electroanalysis 1996, 8, 15–22. [Google Scholar] [CrossRef]
- Gooding, J.J. Electrochemical DNA hybridization biosensors. Electroanalysis 2002, 14, 1149–1156. [Google Scholar] [CrossRef]
- Bora, U.; Sett, A.; Sing, D. Nucleic Acid Based Biosensors for Clinical Applications. Biosens. J. 2013, 1. [Google Scholar] [CrossRef]
- Cagnin, S.; Caraballo, M.; Guiducci, C.; Martini, P.; Ross, M.; Ana, M.S.; Danley, D.; West, T.; Lanfranchi, G. Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life. Sensors 2009, 9, 3122–3148. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.A.P.; Uliana, C.V.; de Souza Castilho, M.; Pesquero, N.C.; Foguel, M.V.; Dos Santos, G.P.; Fugivara, C.S. Amperometric Biosensors for Diagnosis of Disease. INTECH 2013. [Google Scholar] [CrossRef]
- Simkova, D.; Beinrohr, E.; Labuda, J. Flow-through electrochemical system with the DNA-based biosensor for the evaluation of deep DNA damage by chemicals and effect of antioxidants. Acta Chim. Slov. 2009, 2, 129–138. [Google Scholar]
- Jin, H.; Wei, M.; Wang, J. Electrochemical DNA biosensor based on the BDD nanograss array electrode. Chem. Cent. J. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Dutse, S.W.; Yusof, N.A.; Ahmad, H.; Hussein, M.Z.; Zainal, Z.; Hushiarian, R. DNA-based Biosensor for Detection of Ganoderma boninense, an Oil Palm Pathogen Utilizing Newly Synthesized Ruthenium Complex (Ru(phen)2(qtpy)]2+ Based on a PEDOT-PSS/Ag Nanoparticles Modified Electrode. Int. J. Electrochem. Sci. 2013, 8, 11048–11057. [Google Scholar]
- Wang, J.; Cai, X.; Tian, B.; Shiraishi, H. Microfabricated thick-film electrochemical sensor for nucleic acid determination. Analyst 1996, 121, 965–970. [Google Scholar] [CrossRef]
- Ansari, A.A.; Singh, R.; Sumana, G.; Malhotra, B.D. Sol-gel derived nano-structured zinc-oxide film for sexually transmitted disease sensor. Analyst 2009, 134, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.P.; Pratima, R.S.; Ashok, K.; Khare, S.; Gupta, S.; Bansi, D.M. Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens. Bioelectron. 2010, 25, 2586–2591. [Google Scholar]
- Singh, R.; Prasad, R.; Sumana, G.; Arora, K.; Sood, S.; Gupta, R.K.; Malhotra, B.D. STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens. Bioelectron. 2009, 24, 2232–2238. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Verma, R.; Kaushik, A.; Sumana, G.; Sood, S.; Gupta, R.K.; Malhotra, B.D. Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens. Bioelectron. 2011, 26, 2967–2974. [Google Scholar] [CrossRef] [PubMed]
- Hlavata, L.; Vyskocil, V.; Benikova, K.; Borbelyova, M.; Labuda, J. DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee and tea. Cent. Eur. J Chem. 2014, 12, 604–611. [Google Scholar] [CrossRef]
- Singh, R.; Sumana, G.; Verma, R.; Sood, S.; Sood, K.N.; Gupta, R.K.; Malhotra, B.D. Fabrication of Neisseria gonorrhoeae biosensor based on chitosan-MWCNT platform. Thin Solid Films 2010, 519, 1135–1140. [Google Scholar] [CrossRef]
- Singh, R.; Dhand, C.; Sumana, G.; Verma, R.; Sood, S.; Gupta, R.K.; Malhotra, B.D. Polyaniline/carbon nanotubes platform for sexually transmitted disease detection. J. Mol. Recognit. 2010, 23, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Fojta, M. Electrochemical sensors for DNA interactions and damage. Electroanalysis 2002, 14, 1449–1463. [Google Scholar] [CrossRef]
- Brett, A.M.; Serrano, S.; Macedo, T.; Raimundo, T.D.; Marquez, D.; LaScalea, M. Electrochemical determination of carboplatin in serum using a DNA-modified glassy carbon electrode. Electroanalysis 1996, 8, 992–995. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Zhang, G.; He, H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2000, 126, 7097–7101. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, X.; Trigg, A.D.; Tung, C.H.; Kong, J.; Gao, Z. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc. 2007, 129, 5437–5443. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Sumana, G.; Nagarajan, R.; Malhotra, B.D. Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection. Appl. Phys. Lett. 2010, 96. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Dhand, C.; Sumana, G.; Srivastava, A.K.; Nagarajan, R.; Nain, L.; Iwamoto, M.; Manaka, T.; Malhotra, B.D. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromolecules 2011, 12, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Dhand, C.; Sumana, G.; Srivastava, A.K.; Vijayan, N.; Nagarajan, R.; Malhotra, B.D. Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection. Appl. Phys. Lett. 2011, 99. [Google Scholar] [CrossRef]
- Tam, P.D.; Hieu, N.V.; Chien, N.D.; Le, A.T.; Tuan, M.A. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J. Immunol. Methods 2009, 350, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Ju, P.; Ai, S. Controllable synthesis of CdSe nanostructures with tunable morphology and their application in DNA biosensor of Avian Influenza Virus. Sens. Actuators B Chem. 2010, 149, 98–104. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, X.; Li, J.; Yao, X.; Li, J. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron. 2007, 22, 3203–3209. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.; Polsky, R.; Merkoci, A. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun. 2002, 4, 722–726. [Google Scholar] [CrossRef]
- Gustavo, A.; Guillen, Z.; Sebastian-Avila, J.L.; Blondeau, P.; Riu, J.F.; Rius, X. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens. Bioelectron. 2012, 31, 226–232. [Google Scholar]
- Kaewphinit, T.; Santiwatanakul, S.; Promptmas, C.; Chansiri, K. Development of Piezoelectric DNA-BASED Biosensor for Direct Detection of Mycobaterium Tuberculosis in Clinical Specimens. Sens. Transducers 2010, 113, 115–126. [Google Scholar]
- Pathak, S.; Choi, S.K.; Arnheim, N.; Thompson, M.E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. Am. Chem. Soc. 2001, 123, 4103–4104. [Google Scholar] [CrossRef]
- Negi, S.S.; Anand, R.; Pasha, S.T.; Basir, S.F.; Gupta, S.; Khare, S.; Lal, S. Detection of M. tuberculosis in clinical samples of diversified nature by IS6110 based PCR. J. Commun. Dis. 2006, 38, 325–332. [Google Scholar] [PubMed]
- Maxwell, D.J.; Taylor, J.R.; Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Am. Chem. Soc. 2002, 124, 9606–9612. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.J.; Perlette, J.; Tan, W.; Wang, K. Molecular beacons: Novel fluorescent probes. Anal. Chem. 2001, 72, 747A–753A. [Google Scholar]
- Zhang, C.Y.; Yeh, H.C.; Kuroki, M.T.; Wang, T.H. Single-quantum-dot-based DNA nanosensor. Letters 2005, 4, 826–831. [Google Scholar] [CrossRef]
- Su, M.; Li, S.; Dravid, V.P. Microcantilever resonance based DNA detection with nanoparticle probes. Appl. Phys. Lett. 2003, 82, 3562–3564. [Google Scholar] [CrossRef]
- Park, S.J.; Taton, T.A.; Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295, 1503–1506. [Google Scholar] [PubMed]
- Liu, J.; Lu, Y. Calorimetric biosensor based on DNAzyme-assembled gold nanoparticles. J. Fluoresc. 2004, 14, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.A.; Boles, T.C.; Adams, C.P.; Walt, D.R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol. 1996, 14, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.S.; Lowe, C.R.; Cullen, D.C.; Weetal, H.H.; Karube, I.; et al. Handbook of Biosensors Biochips; John Willey & Sons: Chechister, UK, 2007. [Google Scholar]
- Wang, J. From DNA biosensors to gene chips. Nucleic Acid Res. 2000, 28, 3011–3016. [Google Scholar] [CrossRef] [PubMed]
- Taton, T.A.; Mirkin, C.A.; Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 2000, 289, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, G. DNA chip: State-of-the art. Nat. Biotechnol. 1998, 16, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Peter, C.; Meusel, M.; Grawe, F.; Katerkamp, A.; Cammann, K.; Borchers, T. Optical DNA-sensor chip for real time detection of hybridization events. Fresenius J. Anal. Chem. 2001, 371, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.I.; Lieber, C.M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Hood, L.; Heath, J.R.; Phelps, M.E.; Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306, 640–643. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Musick, M.D.; Nicewarner, S.R. Detection of DNA hybridization with Au nanoparticles and Plasmon resonance. Am. Chem. Soc. 2007, 122, 907. [Google Scholar]
- Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.P.; Mirkin, C.A.; Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots. Am. Chem. Soc. 1999, 121, 8122–8123. [Google Scholar] [CrossRef]
- Klerreich, E. Biologists join the dots. Nature 2001, 413, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Chi, L.; Lenhert, S. High-quality mapping of DNA protein complexes by dynamic scanning force microscopy. ChemPhysChem 2001, 2, 384–388. [Google Scholar] [CrossRef]
- Pignataro, B.; Chi, L.F.; Gao, S. Dynamic scanning force microscopy study of self-assembled DNA-protein oligomers. Appl. Phys. A 2002, 74, 447–452. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.D.; Merkoci, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Am. Chem. Soc. 2003, 125, 3214–3215. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Dytioco, R.T.; Tan, W.H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 2003, 125, 11474–11475. [Google Scholar] [CrossRef] [PubMed]
- De Lumley, T.; Campbell, C.; Heller, A. Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. J. Am. Chem. Soc. 1996, 118, 5504–5505. [Google Scholar] [CrossRef]
- Peterlinz, K.A.; Georgiadis, R.M.; Herne, T.M.; Tarlov, M.J. Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 1997, 119, 3401–3402. [Google Scholar] [CrossRef]
- Storhoff, J.J.; Elghanian, R.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, 1959–1964. [Google Scholar] [CrossRef]
- Sato, K.; Hosokawa, K.; Maeda, M. Colorimetric biosensor based DNA nanoparticle conjugates. Anal. Sci. 2007, 23, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhang, C.Y.; Gao, Z.Q. Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Anal. Chem. 2004, 76, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Cao, X.; Jiang, Y.; He, P.G.; Fang, Y.Z. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 2003, 375, 287–293. [Google Scholar] [PubMed]
- Wang, J. Electroanalysis and biosensors. Anal. Chem. 1993, 65, 450–453. [Google Scholar] [CrossRef]
- Abbaspour, A.; Mehrgardi, M.A. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. Anal. Chem. 2004, 76, 5690–5696. [Google Scholar] [CrossRef] [PubMed]
- Tonya, M.H.; Tarlov, M.J. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920. [Google Scholar]
- Ozkan, D.; Erdem, A.; Kara, P.; Kerman, K.; Gooding, J.J.; Nielsen, P.E.; Ozsoz, M. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue an self-assembled alkanethiol monolayer. Electrochem. Commun. 2002, 4, 796–802. [Google Scholar] [CrossRef]
- Tlili, C.; Korri-Youssoufi, H.; Ponsonnet, L.; Martelet, C.; Jaffrezic-Renault, N.J. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta 2005, 68, 131–137. [Google Scholar] [CrossRef] [PubMed]
- ODonnell, M.J.; Tang, K.; Koster, H.; Smith, C.L.; Cantor, C.R. High-density, covalent attachment of DNA to silicon wafers for analysis by maldi-tof mass spectrometry. Anal. Chem. 1997, 69, 2438–2443. [Google Scholar] [CrossRef] [PubMed]
- Ebersole, R.C.; Moran, J.R.; Ward, M.D. Spontaneously Formed Functionally Active Avidin Monolayers on Metal Surfaces: A Strategy for Immobilizing Biological Reagents and Design of Piezoelectric Biosensors. J. Am. Chem. Soc. 1990, 112, 3239–3241. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, M. Toward genoelectronics: Nucleic acid doped conducting polymers. Langmuir 2000, 16, 2269–2274. [Google Scholar] [CrossRef]
- Zhu, N.N.; Zhang, A.P.; Wang, Q.J.; He, P.G.; Fang, Y.Z. Lead sulfide nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Electroanalysis 2004, 16, 577–582. [Google Scholar] [CrossRef]
- Liu, S.Q.; Xu, J.J; Chen, H.Y. ZrO(2) gel-derived DNA-modified electrode and the effect of lanthanide on its electron transfer behavior. Bioelectrochemistry 2002, 57, 149–154. [Google Scholar] [CrossRef]
- Feng, K.J.; Yang, Y.H.; Wang, Z.J.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. A nano-porous CeO2/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta 2006, 70, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kawde, A.; Erdem, A.; Salaza, M. Magnetic bead-based label-free electrochemical detection of DNA hybridization. Analyst 2001, 126, 2020–2024. [Google Scholar] [CrossRef] [PubMed]
- Ovadekova, R.; Jantova, S.; Letasiova, S.; Stepanek, I.; Labuda, J. Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells. Anal. Bioanal. Chem. 2006, 386, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Sano, T.; Smith, C.L.; Cantor, C.R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugate. Science 1992, 58, 120–122. [Google Scholar] [CrossRef]
- Nam, J.M.; Stoeva, S.I.; Mirkin, C.A. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 2004, 126, 5932–5933. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.M.; Thaxton, C.S.; Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301, 1884–1886. [Google Scholar] [CrossRef] [PubMed]
- Geoorganopoulou, D.G.; Chang, L.; Nam, J.M.; Thaxton, C.S.; Mufson, E.J.; Klein, W.L.; Mirkin, C.A. Nanoparticle-based detection in cerebrospinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 2273–2275. [Google Scholar] [CrossRef] [PubMed]
- Patolsky, F.; Lichtenstein, A.; Willner, I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 2001, 19, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Polsky, R.; Gill, R.; Kaganovsky, L.; Willner, I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem. 2006, 78, 2268–2271. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.A.; Wang, J.; Kawde, A.N.; Xiang, Y.; Gothelf, K.V.; Collins, G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 2006, 128, 2228–2229. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Perera, A.P.; Park, M.K. Label-free DNA sensor for detection of bladder cancer biomarkers in urine. Sens. Actuators B Chem. 2013, 178, 200–206. [Google Scholar] [CrossRef]
- Janeway, C.A.; Travers, P.; Walport, M.; Capra, J.D. Immunobiology: The Immune System in Health and Disease, 6th ed.; Garland Science Publishing: New York, NY, USA, 2005. [Google Scholar]
- Niemeyer, C.M.; Alder, M.; Wacker, R. Immuno-PCR: High sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol. 2005, 23, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.M.; Wise, A.R.; Groves, J.T. Bio-barcode amplification assay for cytokines. Anal. Chem. 2005, 77, 6985–6988. [Google Scholar] [CrossRef] [PubMed]
- Noorbakhsh, A.; Salimi, A. Development of DNA electrochemical biosensor based on immobilization of ssDNA on the surface of nickel oxide nanoparticles modified glassy carbon electrode. Biosens. Bioelectron. 2011, 30, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Kobayashi, D.; Sasaki, M.; Araake, H.; Kida, T.; Yagihashi, A.; Yajima, T.; Kameshima, H.; Watanabe, N. Detection of Human Serum Tumor Necrosis Factor-alpha in Healthy Donors, Using a Highly Sensitive Immuno-PCR Assay. Clin. Chem. 1999, 45, 665–669. [Google Scholar] [PubMed]
- Estévez, M.C.; O’Donoghue, M.B.; Chen, X.; Tan, W. Enhancement of flow cytometry sensitivity with highly fluorescent dye-doped silica nanoparticles. Small 2009, 2, 448–461. [Google Scholar]
- Wang, L.; Tan, W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett. 2006, 6, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Yang, Y.; Lin, Y. Graphene-based materials for biosensing and bioimaging. Mater. Res. Soc. 2012, 37, 1290–1296. [Google Scholar] [CrossRef]
- Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997, 277, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, P.; Ceyhan, B.; Niemeyer, C.M. Reversible Switching of DNA-Gold Nanoparticle Aggregation. Angew. Chem. 2004, 116, 6631–6633. [Google Scholar] [CrossRef]
- Li, H.; Rothberg, L. Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036–14039. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.J.; Cho, Y.L.; Chae, J.R.; Lee, J.D.; Choi, K.J.; Kim, S. Molecular beacon-based bioimaging of multiple microRNAs during myogenesis. Biomaterials 2011, 32, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rothberg, L. Detection of Specific Sequences in RNA Using Differential Adsorption of Single-Stranded Oligonucleotides on Gold Nanoparticles. Anal. Chem. 2005, 77, 6229–6233. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, Y. Functional Nucleic Acids for Analytical Applications; Springer: New York, NY, USA, 2009; Volume 8, p. 396. [Google Scholar]
- Huang, Y.F.; Chang, H.T.; Tan, W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem. 2008, 80, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P.W.; Langer, R.; Farokhzad, O.C. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett. 2007, 7, 3065–3070. [Google Scholar] [CrossRef] [PubMed]
- Bagalkot, V.; Farokhzad, O.C.; Langer, R.; Jon, S. An Aptamer-Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew. Chem. Int. Ed. 2006, 45, 8149–8152. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yigit, M.V.; Mazumdar, D.; Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev. 2010, 30, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Z.; Bagalkot, V.; Vasilliou, C.C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M.J.; Langer, R.; et al. Superparamagnetic Iron Oxide Nanoparticle-Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy. Chem Med Chem 2008, 3, 1311–1315. [Google Scholar] [CrossRef] [PubMed]
- Medley, C.D.; Smith, J.E.; Tang, Z.; Wu, Y.; Tan, W. Gold Nanoparticle Based Colorimetric Assay for the Direct Detection of Cancerous Cells. Anal. Chem. 2008, 80, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Qin, M. Zhang, Label-free biosensor: A novel phage-modified Light-Addressable Potentiometric Sensor system for cancer cells monitoring. Biosens. Bioelectron. 2007, 22, 3261–3266. [Google Scholar] [CrossRef] [PubMed]
- Ohmichi, T.; Kawamoto, Y.; Wu, P.; Miyoshi, D.; Karimata, H.; Sugimoto, N. DNA-Based Biosensor for Monitoring pH in Vitro and in Living Cells. Biochemistry 2005, 44, 7125–7130. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; et al. MercuryII - mediated Formation of Thyamine-HgII-Thyamine Base Pairs in DNA Duplexes. J. Am. Chem. Soc. 2006, 128, 2172–2173. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. 15N-15NJ-Coupling Across HgII: Direct Observation of HgII-Mediated T-T Base Pairs in a DNA Duplex. J. Am. Chem. Soc. 2007, 129, 244–245. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, J.; Li, J.; Bruesehoff, P.J.; Pavot, C.M.B.; Brown, A.K. New highly sensitive, selective catalytic DNA biosensors for metal ions. Biosens. Bioelectron. 2003, 18, 529–540. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Salah, K.M.; Zourob, M.M.; Mouffouk, F.; Alrokayan, S.A.; Alaamery, M.A.; Ansari, A.A. DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. Sensors 2015, 15, 14539-14568. https://doi.org/10.3390/s150614539
Abu-Salah KM, Zourob MM, Mouffouk F, Alrokayan SA, Alaamery MA, Ansari AA. DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. Sensors. 2015; 15(6):14539-14568. https://doi.org/10.3390/s150614539
Chicago/Turabian StyleAbu-Salah, Khalid M., Mohammed M. Zourob, Fouzi Mouffouk, Salman A. Alrokayan, Manal A. Alaamery, and Anees A. Ansari. 2015. "DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease" Sensors 15, no. 6: 14539-14568. https://doi.org/10.3390/s150614539
APA StyleAbu-Salah, K. M., Zourob, M. M., Mouffouk, F., Alrokayan, S. A., Alaamery, M. A., & Ansari, A. A. (2015). DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. Sensors, 15(6), 14539-14568. https://doi.org/10.3390/s150614539