Development of a Novel, Low-Cost, Disposable Wooden Pencil Graphite Electrode for Use in the Determination of Antioxidants and Other Biological Compounds
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents
2.2. Preparation of PGEs
2.3. Instrumentation
2.3.1. PGE Polishing
2.3.2. MPE Polishing
2.3.3 GCE Polishing
2.4. Ferricyanide Characterization
2.5. Gallic Acid (GA) Calibration Curve
2.6. Fruit and Vegetable Analysis
2.7. Hot Beverage Analysis
2.8. Uric Acid and Dopamine
2.9. Data Analysis
3. Results and Discussion
3.1. Characterization of Electrode Sensors in 1 mM Ferricyanide
Electrode Type | ∆Ep (mV) (mean ± standard deviation, n = 3) | P Value (vs. GCE) | P Value (vs. MPE) |
---|---|---|---|
GCE | 68.9 ± 4.9 | - | - |
MPE | 133.8 ± 6.6 | 0.0003* | - |
PGE | 74.5 ± 3.1 | 0.1806 | 0.0010* |
3.2. Characterization of Electrode Sensors in Gallic Acid
Validation Parameter | GCE | MP | PGE |
---|---|---|---|
Peak potential (mV) | 399.7 ± 10.1 | 512.0 ± 36.6 | 404.1 ± 0.32 |
Correlation coefficient | 0.9927 | 0.9973 | 0.9900 |
Slope (µW·cm2/mol) | 163,107 ± 6252 | 94,389 ± 2204 | 268,853 ± 12,058 |
% R.S.D. of slope | 3.83 | 2.34 | 4.48 |
Intercept (µW) | 41.5 ± 26.1 | 13.7 ± 9.2 | 129.7 ± 50.4 |
Number of solutions | 7 | 7 | 7 |
LOD (M) | 4.80 × 10−4 | 2.93 × 10−4 | 5.62 × 10−4 |
LOQ (M) | 1.60 × 10−3 | 9.75 × 10−4 | 1.87 × 10−3 |
% R.S.D. of potential | 2.51 | 7.15 | 0.08 |
% R.S.D of peak area | 0.95 | 13.47 | 3.38 |
3.3. Analysis of Electrodes in Fruit/Vegetable Extracts
Peak Potential (mV) | Peak Height (µA) | Signal Area Per Unit Surface Area (µW/cm2) | P Value (Peak Height) | P Value (Signal Area) | ||
---|---|---|---|---|---|---|
Carrot | GCE | 470.9 ± 3.0 | 870.9 ± 166.7 | 143.2 ± 22.8 | 0.008 * | 0.003 * |
PGE | 467.4 ± 1.2 | 8721.2 ± 1253.0 | 1227.1 ± 121.0 | |||
Tomato | GCE | 498.8 ± 8.2 | 125.4 ± 4.4 | 40.3 ± 2.3 | 2 × 10−9 * | 9 × 10−6 * |
PGE | 451.1 ± 13.5 | 992.6 ± 4.5 | 342.2 ± 5.4 | |||
Apple | GCE | 459.7 ± 3.3 | 1261.8 ± 85.0 | 222.3 ± 10.4 | 0.002 * | 0.002 * |
PGE | 451.09 ± 0.04 | 6334.4 ± 487.7 | 998.9 ± 60.3 | |||
Peach | GCE | 476.4 ± 2.6 | 280.7 ± 66.2 | 61.0 ± 13.0 | 0.005 * | 0.003 * |
PGE | 433.7 ± 0.5 | 2816 ± 360.3 | 558.5 ± 55.1 |
3.4. Proof of Principle
3.5. Overall Evaluation of the PGE
Approximate Cost Per Electrode (CDN) | Total Scans Possible with Each Electrode | Total Polishing/Preparation Time Per Scan | Single Electrode Can Be Used for Entire Experimental Series? | |
---|---|---|---|---|
GCE | $190 | indefinite | 15–60 min | Yes |
MPE | $0.13 | 3 | 10–20 s | No |
PGE | $0.30 | 40–50 | 30 s–1.5 min | Yes |
3.5.1. PGE vs. GCE
3.5.2. PGEs vs. MPEs
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sochor, J.; Dobes, J.; Krystofova, O.; Ruttkay-Nedecky, B.; Babula, P.; Pohanka, M.; Jurikova, T.; Zitka, O.; Adam, V.; Klejdus, B.; et al. Electrochemistry as a tool for studying antioxidant properties. Int. J. Electrochem. Sci. 2013, 8, 8464–8489. [Google Scholar]
- Vestergaard, M.; Kerman, K.; Tamiya, E. An electrochemical approach for detecting copper-chelating properties of flavonoids using disposable pencil graphite electrodes: Possible implications in copper-mediated illnesses. Anal. Chim. Acta 2005, 538, 273–281. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review. Biochem. Anal. Biochem. 2012, 1, 1–10. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Zou, H.; Waterhouse, A.L. A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics. J. Agric. Food Chem. 2001, 49, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Ervin, E.M.; Kariuki, J.K. Determination of the Impact of Extraction Methods and Growing Conditions on Antioxidants in Produce by Differential Pulse Voltammetry. Metamorphosis. Availabe online: http://www.coplac.org/publications/metamorphosis/metamorphosis.php?a=Spring2014 (accessed 20 December 2014).
- Ervin, E.M.; Kariuki, J.K. Effect of extraction method on antioxidant determination in produce by differential pulse voltammetry. Int. J. Electrochem. Sci. 2014, 9, 6235–6245. [Google Scholar]
- Chevion, S.; Roberts, M.A.; Chevion, M. The use of cyclic voltammetry for the evaluation of anioxidant capacity. Free Rad. Biol. Med. 2000, 28, 860–870. [Google Scholar] [CrossRef]
- Piljac-Žegarac, J.; Valek, L.; Stipčević, T.; Martinez, S. Electrochemical determination of antioxidant capacity of fruit tea infusions. Food Chem. 2010, 121, 820–825. [Google Scholar] [CrossRef]
- Barros, L.; Falcão, S.; Baptista, P.; Freire, C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 2008, 111, 61–66. [Google Scholar] [CrossRef]
- Medvidović-Kosanović, M.; Šeruga, M.; Jakobek, L.; Novak, I. Electrochemical and antioxidant properties of (+)-catechin, quercetin and rutin. Croat. Chem. Acta 2010, 83, 197–207. [Google Scholar]
- Simić, A.; Manojlović, D.; Segan, D.; Todorović, M. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules 2007, 12, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Blasco, A.J.; González, M.C.; Escarpa, A. Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: Towards an electrochemical index of natural antioxidants. Anal. Chim. Acta 2004, 511, 71–81. [Google Scholar] [CrossRef]
- Pine Research Instrumentation Glassy Carbon Electrodes. Available online: https://www.pineinst.com/echem/viewproduct.asp?ID=46720 (accessed on 10 June 2015).
- Bioanalytical Systems Inc. BASi Prices. Available online: http://www.basinc.com/products/prices.php?country=usa&title=BASi+Stationary+Voltammetry+Electrodes&ref=%2Fproducts%2Fec%2Fsve.php&search=MF-2011%2CMF-2012%2CMF-2070%2CMF-2013%2CMF-2071%2CMF-2014%2CMF-2072%2CMF-2073%2CMF-2010%2CMF-2015%2CCF-1010%2CMF-2016%2CMF-2018&x=25&y=14 (accessed on 10 June 2015).
- Riber, J.; de la Fuente, C.; Vazquez, M.D.; Tascón, M.L.; Sánchez Batanero, P. Electrochemical study of antioxidants at a polypyrrole electrode modified by a nickel phthalocyanine complex. Application to their HPLC separation and to their FIA system detections. Talanta 2000, 52, 241–252. [Google Scholar] [CrossRef]
- Kariuki, J.K. An Electrochemical and Spectroscopic Characterization of Pencil Graphite Electrodes. J. Electrochem. Soc. 2012, 159, H747–H751. [Google Scholar] [CrossRef]
- Photinon, K.; Chalermchart, Y.; Khanongnuch, C.; Wang, S.H.; Liu, C.C. A thick-film sensor as a novel device for determination of polyphenols and their antioxidant capacity in white wine. Sensors 2010, 10, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Pala, B.B.; Vural, T.; Kuralay, F.; Çırak, T.; Bolat, G.; Abacı, S.; Denkbaş, E.B. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis. Appl. Surf. Sci. 2014, 303, 37–45. [Google Scholar] [CrossRef]
- Kuralay, F.; Vural, T.; Bayram, C.; Denkbas, E.B.; Abaci, S. Carbon nanotube-chitosan modified disposable pencil graphite electrode for Vitamin B12 analysis. Colloids Surf. B. Biointerfaces 2011, 87, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Dede, E.; Sağlam, Ö.; Dilgin, Y. Sensitive voltammetric determination of niclosamide at a disposable pencil graphite electrode. Electrochim. Acta 2014, 127, 20–26. [Google Scholar] [CrossRef]
- Mese, F.; Congur, G.; Erdem, A. Voltammetric and impedimetric detection of DNA hybridization by using dendrimer modified graphite electrodes. J. Electroanal. Chem. 2014, 719, 92–97. [Google Scholar] [CrossRef]
- Gowda, J.I.; Nandibewoor, S.T. Electrochemical characterization and determination of paclitaxel drug using graphite pencil electrode. Electrochim. Acta 2014, 116, 326–333. [Google Scholar] [CrossRef]
- Ozcan, A.; Sahin, Y. Preparation of selective and sensitive electrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum. Biosens. Bioelectron. 2010, 25, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Alipour, E.; Majidi, M.R.; Saadatirad, A.; Golabi, S.M. Determination of uric acid in biological samples on the pretreated pencil graphite electrode. Anal. Methods 2012, 4, 2288–2295. [Google Scholar] [CrossRef]
- Alipour, E.; Majidi, M.R.; Saadatirad, A.; Golabi, S.M.; Alizadeh, A.M. Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim. Acta 2013, 91, 36–42. [Google Scholar] [CrossRef]
- Santhiago, M.; Kubota, L.T. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens. Actuators B Chem. 2013, 177, 224–230. [Google Scholar] [CrossRef]
- Uygun, Z.O.; Dilgin, Y. A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sens. Actuators B Chem. 2013, 188, 78–84. [Google Scholar] [CrossRef]
- Abdul Aziz, M.; Kawde, A.N. Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta 2013, 115, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Yardım, Y.; Sentürk, Z. Electrochemical evaluation and adsorptive stripping voltammetric determination of capsaicin or dihydrocapsaicin on a disposable pencil graphite electrode. Talanta 2013, 112, 11–19. [Google Scholar] [CrossRef] [PubMed]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the determination of biological antioxidant capacity in vitro: A review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sadikoglu, M.; Saglikoglu, G.; Yagmur, S.; Askin, G. Determination of ascorbic acid in tablet dosage forms and some fruit juices by DPV. Int. J. Electrochem. Sci. 2008, 3, 1534–1542. [Google Scholar]
- Kamel, M.M.; Abdalla, E.M.; Ibrahim, M.S. Electrochemical studies of ascorbic acid , dopamine , and uric acid at a DL-norvaline-deposited glassy carbon electrode. Can. J. Chem. 2014, 336, 329–336. [Google Scholar] [CrossRef]
- Dilgin, Y.; Kizilkaya, B.; Ertek, B.; Işik, F.; Dilgin, D.G. Electrocatalytic oxidation of sulphide using a pencil graphite electrode modified with hematoxylin. Sens. Actuators B Chem. 2012, 171, 223–229. [Google Scholar] [CrossRef]
- Mott, J.R.; Munson, P.J.; Kreuter, R.A.; Chohan, B.S.; Sykes, D.G. Design, development, and characterization of an inexpensive portable cyclic voltammeter. J. Chem. Educ. 2014, 91, 1028–1036. [Google Scholar] [CrossRef]
- Masse, R.C.; Gerken, J.B. Assembly of a robust and economical MnO2-based reference electrode. J. Chem. Educ. 2015, 92, 110–115. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kariuki, J.; Ervin, E.; Olafson, C. Development of a Novel, Low-Cost, Disposable Wooden Pencil Graphite Electrode for Use in the Determination of Antioxidants and Other Biological Compounds. Sensors 2015, 15, 18887-18900. https://doi.org/10.3390/s150818887
Kariuki J, Ervin E, Olafson C. Development of a Novel, Low-Cost, Disposable Wooden Pencil Graphite Electrode for Use in the Determination of Antioxidants and Other Biological Compounds. Sensors. 2015; 15(8):18887-18900. https://doi.org/10.3390/s150818887
Chicago/Turabian StyleKariuki, James, Emily Ervin, and Carly Olafson. 2015. "Development of a Novel, Low-Cost, Disposable Wooden Pencil Graphite Electrode for Use in the Determination of Antioxidants and Other Biological Compounds" Sensors 15, no. 8: 18887-18900. https://doi.org/10.3390/s150818887