Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)
Abstract
:1. Introduction
2. Numerical Modeling and Simulation
2.1. Analytical Model
2.2. Chemical Kinetics
Gases | Combustion Model | Heat of Combustion | Pisat (mmHg) | Yi |
---|---|---|---|---|
Acetone (CH3)2CO | –1761 kJ/mol (–303.2 × 105 J/kg) | 184.950 A = 7.2316 B = 1277.03 C = 237.23 | 0.243 | |
2-Propanol C3H7OH | –1907 kJ/mol (–317.3 × 105 J/kg) | 33.158 A = 8.1182 B = 1580.92 C = 219.62 | 0.044 |
Reaction | Ar | Er |
---|---|---|
4.0 × 1014 | 2.09 × 108 | |
7.0 × 1013 | 8.79 × 107 | |
8.5 × 1012 | 8.79 × 107 | |
1.0 × 1012 | 1.74 × 108 | |
3.1 × 1013 | 2.05 × 108 | |
1.26 × 1013 | 1.06 × 108 | |
1.0 × 1014 | 1.05 × 108 | |
6.75 × 109 | 1.256 × 108 |
Reaction | Ar | Er |
---|---|---|
4.19 × 1010 | 7.865 × 107 | |
3.54 × 1010 | 7.802 × 107 | |
4.40 × 101 | 1.6 × 106 |
2.3. Numerical Methodology
2.3.1. Computational Fluid Dynamics
2.3.2. Finite Element Analysis
2.4. Temperature-Dependent Properties
Species | σ (Å) | ε / kb (K) |
---|---|---|
H2 | 2.827 | 59.7 |
H2O | 2.641 | 809.1 |
N2 | 3.798 | 71.4 |
O2 | 3.467 | 106.7 |
CO | 3.690 | 91.7 |
CO2 | 3.941 | 195.2 |
C3H6 | 4.807 | 248.9 |
C3H6O | 4.670 | 443 |
C3H8O | 4.937 | 393.42 |
3. Fabrication Procedure and Experimental Apparatus
3.1. Fabrication of the Microcantilever Array
3.2. Experimental Apparatus and Procedure
3.3. Uncertainty
4. Results and Discussion
4.1. Baseline Simulation
4.2. Bending Response to Explosive Vapors
4.3. Experimental Results
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Torrijo, L.G.V. Development of Cantilevers for Biomolecular Measurements. Ph.D. Thesis, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain, 2006. [Google Scholar]
- Lavrik, N.V.; Sepaniak, M.J.; Datskos, P.G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 2004, 75, 2229–2253. [Google Scholar] [CrossRef]
- Baller, M.K.; Lang, H.P.; Fritz, J.; Gerber, Ch.; Gimzewski, J.K.; Drechsler, U.; Rothuizen, H.; Despont, M.; Vettiger, P.; Battiston, F.M.; et al. A cantilever array-based artificial nose. Ultramicroscopy 2000, 82, 1–9. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G. Solid State Gas Sensing—Chapter 9. Cantilever-Based Gas Sensing, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Singamaneni, S.; LeMieux, M.C.; Lang, H.P.; Gerber, Ch.; Lam, Y.; Zauscher, S.; Datskos, P.G.; Lavrik, N.V.; Jiang, H.; Naik, R.R.; et al. Bimaterial microcantilevers as a hybrid sensing platform. Adv. Mater. 2008, 20, 653–680. [Google Scholar] [CrossRef]
- Vidic, A.; Then, D.; Ziegler, Ch. A new cantilever system for gas and liquid sensing. Ultramicroscopy 2003, 97, 407–416. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, W.; Zhou, Q.; Zheng, Y.; You, Z. Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds. Anal. Chim. Acta 2010, 671, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Yinon, J. Detection of explosives by electronic noses. Anal. Chem. 2003, 75, 98–105. [Google Scholar] [CrossRef]
- Ruan, W.; Li, Y.; Tan, Z.; Liu, L.; Jiang, K.; Wang, Z. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens. Actuators B Chem. 2013, 176, 141–148. [Google Scholar] [CrossRef]
- Nelson, I.C.; Banerjee, D.; Rogers, W.J.; Mannan, M.S. Detection of explosives using heated micro-cantilever sensors. Proc. SPIE 2006, 6223, 1–8. [Google Scholar]
- Kooser, A.; Gunter, R.L.; Delinger, W.D.; Porter, T.L.; Eastman, M.P. Gas sensing using embedded piezoresistive microcantilever sensors. Sens. Actuators B Chem. 2004, 99, 474–479. [Google Scholar] [CrossRef]
- Yang, Z.; Dou, X.; Zhang, S.; Guo, L.; Zu, B.; Wu, Z.; Zeng, H. A high-performance nitro-explosives schottky sensor boosted by interface modulation. Adv. Funct. Mater. 2015, 25, 4039–4048. [Google Scholar] [CrossRef]
- Zu, B.; Guo, Y.; Dou, X. Nanostructure-based optoelectronic sensing of vapor phase explosives—A promising but challenging method. Nanoscale 2013, 5, 10693–10701. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zu, B.; Yang, Z.; Cao, H.; Zheng, X.; Dou, X. APTS and RGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection. Nanoscale 2014, 6, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.E.; Kolaczkowski, S.T. Introduction to Catalytic Combustion, 1st ed.; Gordon and Breach Science Publisher: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Ahn, J.A.; Eastwood, C.; Sitzki, L.; Ronney, P.D. Gas-phase and catalytic combustion in heat-recirculating burners. Proc. Combust. Inst. 2005, 30, 2463–2472. [Google Scholar] [CrossRef]
- Fuller, E.N.; Schettler, P.D.; Giddings, J.C. A new method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 1966, 58, 19–27. [Google Scholar] [CrossRef]
- Everaert, K.; Baeyens, J. Catalytic combustion of volatile organic compounds. J. Hazard. Mater. 2004, 109, 113–139. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Flaherty, D.W.; Yan, T.; Mullins, C.B. Selective oxidation of propanol on Au (111): Mechanistic insights into aerobic oxidation of alcohols. Chem. Phys. Chem. 2008, 9, 2461–2466. [Google Scholar] [CrossRef] [PubMed]
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Cant, N.W.; Hall, W.K. Catalytic oxidation—IV. Ethylene and propylene oxidation over gold. J. Phys. Chem. 1971, 75, 2914–2921. [Google Scholar] [CrossRef]
- Ismagilov, I.Z.; Michurin, E.M.; Sukhova, O.B.; Tsykoza, L.T.; Matus, E.V.; Kerzhentsev, M.A.; Ismagilov, Z.R.; Zagoruiko, A.N.; Rebrov, E.V.; de Croon, M.H.J.M.; et al. Oxidation of organic compounds in a microstructured catalytic reactor. Chem. Eng. J. 2008, 135, 57–65. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yang, S.M. Complete oxidation of 2-propanol over gold-based catalysts supported on metal oxides. Appl. Catal. A Gen. 2008, 334, 92–99. [Google Scholar] [CrossRef]
- Kozanoglu, B.; Lopez, J. Thermal boundary layer and the characteristic length on natural convection over a horizontal plate. Heat Mass Transf. 2007, 43, 333–339. [Google Scholar] [CrossRef]
- Bullen, D.; Wang, X.; Zou, J.; Chung, S.-W.; Mirkin, C.A.; Liu, C. Design, fabrication, and characterization of thermally actuated probe arrays for dip pen nanolithography. J. Microelectromech. Syst. 2004, 13, 594–602. [Google Scholar] [CrossRef]
- NIST Chemistry Web Book. Available online: http://webbook.nist.gov/chemistry (accessed on 27 August 2015).
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Meyer, G.; Amer, N.M. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 1988, 53, 1045–1047. [Google Scholar] [CrossRef]
- Yaws, C.L.; Yang, H.C. To estimate vapor pressure easily. Hydrocarb. Process. 2009, 68, 65–70. [Google Scholar]
- Ansari, M.Z.; Cho, C. Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors 2009, 9, 6046–6057. [Google Scholar] [CrossRef] [PubMed]
- Goericke, F.T.; King, W.P. Modeling piezoresistive microcantilever sensor response to surface stress for biochemical sensors. IEEE Sensors J. 2008, 8, 1404–1410. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-W.; Fragala, J.; Banerjee, D. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs). Sensors 2015, 15, 21785-21806. https://doi.org/10.3390/s150921785
Kang S-W, Fragala J, Banerjee D. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs). Sensors. 2015; 15(9):21785-21806. https://doi.org/10.3390/s150921785
Chicago/Turabian StyleKang, Seok-Won, Joe Fragala, and Debjyoti Banerjee. 2015. "Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)" Sensors 15, no. 9: 21785-21806. https://doi.org/10.3390/s150921785
APA StyleKang, S. -W., Fragala, J., & Banerjee, D. (2015). Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs). Sensors, 15(9), 21785-21806. https://doi.org/10.3390/s150921785