Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information
Abstract
:1. Introduction
2. Fisher Information Formulation
3. FI Analysis of MWD Location Estimation
4. Experimental Verification of FI Analysis
4.1. Measurement of RSS Field
4.2. Measurement of Non-Modeled RSS Sample Factors
4.3. Calculation of FI from Sampled RSS Values
4.4. Comparison of CRB Based on FI and MLE Deviation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- He, S.N.; Chan, S.H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Lo, A.; Niemegeers, I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [Google Scholar] [CrossRef]
- Thomas, J.A.; Cover, T. Elements of Information Theory; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Sengijpta, S.K. Fundamentals of statistical signal processing: Estimation theory. Technometrics 1995, 37, 465–466. [Google Scholar] [CrossRef]
- Martin, R.K.; King, A.S.; Thomas, R.W.; Pennington, J. Practical Limits in Rss-Based Positioning. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 2488–2491.
- Leitinger, E.; Meissner, P.; Rudisser, C.; Dumphart, G.; Witrisal, K. Evaluation of position-related information in multipath components for indoor positioning. IEEE J. Sel. Areas Commun. 2015, 33, 2313–2328. [Google Scholar] [CrossRef]
- Han, D.; Jung, S.; Lee, M.; Yoon, G. Building a practical Wi-Fi-based indoor navigation system. IEEE Pervasive Comput. 2014, 13, 72–79. [Google Scholar]
- Beder, C.; McGibney, A.; Klepal, M. Predicting the Expected Accuracy for Fingerprinting Based Wi-Fi Localisation Systems. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, 21–23 September 2011; pp. 1–6.
- Liu, H.; Gan, Y.; Yang, J.; Sidhom, S.; Wang, Y.; Chen, Y.; Ye, F. Push the Limit of Wi-Fi Based Localization for Smartphones. In Proceedings of the 18th annual international conference on Mobile computing and networking, Istanbul, Turkey, 22–26 August 2012; pp. 305–316.
- Figuera, C.; Mora-Jimenez, I.; Guerrero-Curieses, A.; Rojo-Alvarez, J.L.; Everss, E.; Wilby, M.; Ramos-Lopez, J. Nonparametric model comparison and uncertainty evaluation for signal strength indoor location. IEEE Trans. Mob. Comput. 2009, 8, 1250–1264. [Google Scholar] [CrossRef]
- Stoyanova, T.; Kerasiotis, F.; Efstathiou, K.; Papadopoulos, G. Modeling of the RSS Uncertainty for RSS-Based Outdoor Localization and Tracking Applications in Wireless Sensor Networks. In Proceedings of the 2010 Fourth International Conference on Sensor Technologies and Applications (SENSORCOMM), Venice, Italy, 18–25 July 2010; pp. 45–50.
- Elnahrawy, E.; Li, X.; Martin, R.P. The Limits of Localization Using Signal Strength: A Comparative Study. In Proceedings of the 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, Santa Clara, CA, USA, 4–7 October 2004; pp. 406–414.
- Beder, C.; Klepal, M. Fingerprinting based localisation revisited: A rigorous approach for comparing RSSI measurements coping with missed access points and differing antenna attenuations. In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 13–15 November 2012; pp. 1–7.
- Sen, S.; Lee, J.; Kim, K.-H.; Congdon, P. Avoiding multipath to revive inbuilding Wi-Fi localization. In Proceedings of the 11th Annual International Conference on Mobile Systems, Applications, and Services, Taipei, Taiwan, 25–28 June 2013; pp. 249–262.
- Garcia-Villalonga, S.; Perez-Navarro, A. Influence of human absorption of Wi-Fi signal in indoor positioning with Wi-Fi fingerprinting. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, Canada, 4–7 October 2015; pp. 1–10.
- Proakis, J.G.; Salehi, M. Fundamentals of Communication Systems; Pearson Education: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Rappaport, T.S. Wireless Communications: Principles and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Richter, P.; Seitz, J.; Patiño-Studencka, L.; Boronat, J.G.; Thielecke, J. Sensor data fusion for seamless navigation using Wi-Fi signal strengths and gnss pseudoranges. In Proceedings of the 2012 European Navigation Conference, Danzig, Poland, 25–27 April 2012.
- Meyr, H.; Moeneclaey, M.; Fechtel, S. Digital Communication Receivers; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Harry, L.; Trees, V. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Farshad, A.; Li, J.; Marina, M.K.; Garcia, F.J. A Microscopic Look at Wi-Fi Fingerprinting for Indoor Mobile Phone Localization in Diverse Environments. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Montbeliard-Belfort, France, 28–31 May 2013; pp. 1–10.
- Lim, J.S.; Jang, W.H.; Yoon, G.W.; Han, D.S. Radio map update automation for Wi-Fi positioning systems. IEEE Commun. Lett. 2013, 17, 693–696. [Google Scholar] [CrossRef]
- Eisa, S.; Peixoto, J.; Meneses, F.; Moreira, A. Removing useless aps and fingerprints from Wi-Fi indoor positioning radio maps. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Montbeliard-Belfort, France, 28–31 May 2013; pp. 1–7.
- Incel, O.D.; Kose, M.; Ersoy, C. A review and taxonomy of activity recognition on mobile phones. BioNanoScience 2013, 3, 145–171. [Google Scholar] [CrossRef]
- Park, J.-G.; Patel, A.; Curtis, D.; Teller, S.; Ledlie, J. Online pose classification and walking speed estimation using handheld devices. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 113–122.
- Khan, A.M.; Lee, Y.-K.; Lee, S.; Kim, T.-S. Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In Proceedings of the 2010 5th International Conference on Future Information Technology, Busan, Korea, 21–23 May 2010; pp. 1–6.
- Fujinami, K.; Kouchi, S.; Xue, Y. Design and implementation of an on-body placement-aware smartphone. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012; pp. 69–74.
- Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Jiang, Z.P.; Xi, W.; Li, X.Y.; Tang, S.J.; Zhao, J.Z.; Han, J.S.; Zhao, K.; Wang, Z.; Xiao, B. Communicating is crowdsourcing: Wi-Fi indoor localization with CSI-based speed estimation. J. Comput. Sci. Technol. 2014, 29, 589–604. [Google Scholar] [CrossRef]
- Nezafat, M.; Kaveh, M.; Tsuji, H. Indoor localization using a spatial channel signature database. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 406–409. [Google Scholar] [CrossRef]
- Al Khanbashi, N.; Alsindi, N.; Al-Araji, S.; Ali, N.; Aweya, J. Performance evaluation of CIR based location fingerprinting. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), Sydney, Australia, 9–12 September 2012; pp. 2466–2471.
- Wu, K.S.; Xiao, J.; Yi, Y.W.; Chen, D.H.; Luo, X.N.; Ni, L.M. Csi-based indoor localization. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1300–1309. [Google Scholar] [CrossRef]
- Kotaru, M.; Joshi, K.; Bharadia, D.; Katti, S. Spotfi: Decimeter level localization using Wi-Fi. Comput. Commun. Rev. 2015, 45, 269–282. [Google Scholar] [CrossRef]
RSS Sample Uncertainty Factors | Deviation Value |
---|---|
temporal variation | 3 dB for 2.4 GHz band and 1 dB for 5 GHz band |
small scale multipath | 3 dB for 2.4 GHz band and 2.7 dB for 5 GHz band |
antenna orientation | moderate level of LOS about 3 dB, NLOS negligible |
combined, body absorption, temporal variation and small scale multipath | roughly 5 dB in NLOS environment. In a LOS environment can be up to 20 dB |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, J.; Nielsen, C. Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information. Sensors 2016, 16, 1570. https://doi.org/10.3390/s16101570
Nielsen J, Nielsen C. Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information. Sensors. 2016; 16(10):1570. https://doi.org/10.3390/s16101570
Chicago/Turabian StyleNielsen, John, and Christopher Nielsen. 2016. "Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information" Sensors 16, no. 10: 1570. https://doi.org/10.3390/s16101570
APA StyleNielsen, J., & Nielsen, C. (2016). Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information. Sensors, 16(10), 1570. https://doi.org/10.3390/s16101570