A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes
Abstract
:1. Introduction
2. Theory and Principle of Operation of the Electronic Tongue System
2.1. Electronic Tongue System Analogy
2.2. Theoretical and Mathematical Formulation of the Proposed IDC Electronic Tongue
3. Experimental Work
3.1. Fabrication Procedure of the Interdigitated Electrode
3.2. Fabrication Procedure of Interdigitated Capacitor (IDC) Sensing Elements
3.3. Detection Mechanism of the Proposed IDC Electronic Tongue
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ciosek, P.; Wróblewski, W. Potentiometric electronic tongues for foodstuff and biosample recognition—An overview. Sensors 2011, 11, 4688–4701. [Google Scholar] [PubMed]
- Gallardo, J.; Alegret, S.; Del Valle, M. Application of a potentiometric electronic tongue as a classification tool in food analysis. Talanta 2005, 66, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Gutés, A.; Ibanez, A.B.; Del Valle, M.; Cespedes, F. Automated SIA e-tongue employing a voltammetric biosensor array for the simultaneous determination of glucose and ascorbic acid. Electroanalysis 2006, 18, 82–88. [Google Scholar] [CrossRef]
- Hruškar, M.; Major, N.; Krpan, M. Evaluation of milk and dairy products. Mljekarstvo 2009, 59, 193–200. [Google Scholar]
- Palit, M.; Tudu, B.; Dutta, P.K.; Dutta, A.; Jana, A.; Roy, J.K.; Bhattacharyya, N.; Bandyopadhyay, R.; Chatterjee, A. Classification of black tea taste and correlation with tea taster’s mark using voltammetric electronic tongue. IEEE Trans. Instrum. Meas. 2010, 59, 2230–2239. [Google Scholar] [CrossRef]
- Gutierrez, M.; Alegret, S.; Del Valle, M. Potentiometric bioelectronic tongue for the analysis of urea and alkaline ions in clinical samples. Biosens. Bioelectron. 2007, 22, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Esbensen, K.; Kirsanov, D.; Rudnitskaya, A.L.A.; Mortensen, J.; Pedersen, J.; Vognsen, L.; Makarychev-Mikhailov, S.; Vlasov, Y. Fermentation monitoring using multisensor systems: Feasibility study of the electronic tongue. Anal. Bioanal. Chem. 2004, 378, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Abbas, M.N.; Radwan, A.A.L.; del Valle, M. Potentiometric electronic tongue to resolve mixtures of sulfide and perchlorate anions. Sensors 2011, 11, 3214–3226. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Gutiérrez, J.M.; Alegret, S.; Leija, L.; Hernández, P.R.; Liliana Favari, L.; Muñoz, R.; Del Valle, M. Remote environmental monitoring employing a potentiometric electronic tongue. Int. J. Environ. Anal. Chem. 2008, 88, 103–117. [Google Scholar] [CrossRef]
- Bueno, L.; de Araujo, W.R.; Salles, M.O.; Kussuda, M.Y.; Paixão, T.R.L.C. Voltammetric electronic tongue for discrimination of milk adulterated with urea, formaldehyde and melamine. Chemosensors 2014, 2, 251–266. [Google Scholar] [CrossRef]
- Winquist, F.; Olsson, J.; Eriksson, M. Multicomponent analysis of drinking water by a voltammetric electronic tongue. Anal. Chim. Acta 2011, 683, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Winquist, F. Voltammetric electronic tongues—basic principles and applications. Microchim. Acta 2008, 163, 3–10. [Google Scholar] [CrossRef]
- Cetό, X.; Apetrei, C.; Del Valle, M.; Rodriguez-Méndez, M.L. Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array. Electrochim. Acta 2014, 120, 180–186. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; del Valle, I.; de Saja, J.A.; Rodríguez-Méndez, M.L. An electrochemical quartz crystal microbalance multisensor system based on phthalocyanine nanostructured films: Discrimination of musts. Sensors 2015, 15, 29233–29249. [Google Scholar] [CrossRef] [PubMed]
- Zeravik, J.; Hlavacek, A.; Lacina, K.; Skládal, P. State of the art in the field of electronic and bioelectronic tongues—towards the analysis of wines. Electroanalysis 2009, 21, 2509–2520. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shi, J.; Zou, X.; Li, Z.; Zhu, Y. Microfabricated interdigitated Au electrode for voltammetric determination of lead and cadmium in Chinese mitten crab (Eriocheir sinensis). Food Chem. 2016, 201, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, A.; Rodriguez-Mendez, M.L.; de Saja, J.A. Langmuir–blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste. Sens. Aatctuors B Chem. 2003, 95, 357–365. [Google Scholar] [CrossRef]
- Parra, V.; Arrieta, A.; Fernández-Escudero, J.A.; Rodríguez-Méndez, M.L.; de Saja, J.A. Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sens. Actuators B Chem. 2006, 118, 448–453. [Google Scholar] [CrossRef]
- Scampicchio, M.; Benedetti, S.; Brunetti, B.; Mannino, S. Amperometric electronic tongue for the evaluation of the tea astringency. Electroanal. 2006, 18, 1643–1648. [Google Scholar] [CrossRef]
- Scampicchio, M.; Ballabio, D.; Arecchi, A.; Cosio, S.M.; Mannino, S. Amperometric electronic tongue for food analysis. Microchim. Acta 2008, 163, 11–21. [Google Scholar] [CrossRef]
- Bae, Y.M.; Cho, S.I. Use of a polymer membrane sensor array for quantification and discrimination of liquid food. T. ASAE 2005, 48, 251–256. [Google Scholar] [CrossRef]
- Halder, A.; Mahato, M.; Sinha, T.; Adhikari, B.; Mukherjee, S.; Bhattacharyya, N. Polymer membrane electrode based potentiometric taste sensor: A new sensor to distinguish five basic tastes. In Proceedings of the IEEE Conference on Sensing Technology, Kolkata, India, 18–21 December 2012; pp. 785–789.
- Tahara, Y.; Nakashi, K.; Ji, K.; Ikeda, A.; Toko, K. Development of a portable taste sensor with a lipid/polymer membrane. Sensors 2013, 13, 1076–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahara, Y.; Ikeda, A.; Maehara, Y.; Habara, M.; Toko, K. Development and evaluation of a miniaturized taste sensor chip. Sensors 2011, 11, 9878–9886. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.Y.M.; Shya, T.J.; Ahmad, M.N.; Shakaff, A.Y.M.; Othman, A.R.; Hitam, M.S. Monitoring of milk quality with disposable taste sensor. Sensors 2003, 3, 340–349. [Google Scholar] [CrossRef]
- Thete, A.R.; Henkel, T.; Göckeritz, R.; Endlich, M.; Köhler, J.M.; Gross, G.A. A hydrogel based fluorescent micro array used for the characterization of liquid analytes. Anal. Chim. Acta 2009, 633, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.M.; Yun, H.J.; Kwon, J.B.; Kwon, H.C.; Kim, S.W.; Yoon, N.R.; Kim, J.S.; Kang, S.W. Taste sensor based on lipid/polymer membrane using cascoded compatible lateral bipolar transistor. Sens. Lett. 2015, 13, 683–686. [Google Scholar] [CrossRef]
- Sehra, G.; Cole, M.; Gardner, J.W. Miniature taste sensing system based on dual SH-SAW sensor device: An electronic tongue. Sens. Actuators B Chem. 2004, 103, 233–239. [Google Scholar] [CrossRef]
- Lee, S.M.; Jang, S.W.; Lee, S.H.; Kim, J.H.; Kim, S.H.; Kang, S.W. Measurement of basic taste substances by a fiber optic taste sensor using evanescent field absorption. Sens. Mater. 2002, 14, 11–21. [Google Scholar]
- Sohna, Y.S.; Goodeyb, A.; Anslynb, E.V.; McDevittb, J.T.; Shearb, J.B.; Neikirka, D.P. A microbead array chemical sensor using capillary-based sample introduction: Toward the development of an electronic tongue. Biosens. Bioelectron. 2005, 21, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.W.; Chang, Y.W.; Lee, G.Y.; Cho, S.; Kang, M.J. A capacitive biosensor based on an interdigitated electrode with nanoislands. Anal. Chim. Acta 2014, 844, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, X.; Dong, P.; Wang, C.; Wang, J.; Liu, Y.; Chen, J. Electrochemical biosensor based on interdigitated electrodes for determination of thyroid stimulating hormone. Int. J. Electrochem. Sci. 2014, 9, 12–21. [Google Scholar]
- Quershi, A.; Gurbuz, Y.; Niazi, J.H. A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker. Biosens. Bioelectron. 2009, 25, 877–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patskovsky, S.; Latendresse, V.; Dallaire, A.M.; Doré-Mathieu, L.; Meunier, M. Combined surface plasmon resonance and impedance spectroscopy systems for biosensing. Analyst 2014, 139, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Angkawisittpan, N.; Manasri, T. Determination of sugar content in sugar solutions using interdigital capacitor sensor. Meas. Sci. Rev. 2012, 12, 8–13. [Google Scholar] [CrossRef]
- Dubuc, D.; Grenier, K.; Poupo, M.; Fournié, J.J. Broadband microwave biosensing based on interdigitated capacitor for lab-on-chip applications. In Proceeding of the IEEE Conference on New Circuits and Systems, Montreal, QC, Canada, 17–20 June 2012; pp. 529–532.
- Huang, S.Y.; Chou, C.M.; Chen, T.H.; Chiou, P.C.; Hsiao, V.K.S.; Ching, C.T.S.; Sun, T.P. Enhanced sensitivity using microfluidic, interdigitated microelectrode based capacitance glucose sensor measured at 4 MHz. J. Electrochem. Soc. 2014, 161, B102–B105. [Google Scholar] [CrossRef]
- Kotani, K.; Kawayama, I.; Tonouchi, M. Dielectric response of c-oriented SrBi2Ta2O9 thin films observed with interdigital electrodes. Jpn. J. Appl. Phys. 2002, 41, 6790–6792. [Google Scholar] [CrossRef]
- Kumara, N.; Sahatiyaa, P.; Dubeya, P. Fabrication of CNT based gas sensor using interdigitated gold electrodes. Procedia Mater. Sci. 2014, 6, 1976–1980. [Google Scholar] [CrossRef]
- Tsenga, C.C.; Chouc, Y.H.; Hsieh, T.W.; Wange, M.W.; Shub, Y.Y.; Ger, M.D. Interdigitated electrode fabricated by integration of ink-jet printing with electroless plating and its application in gas sensor. Colloid. Surf. A 2012, 402, 45–52. [Google Scholar] [CrossRef]
- Sapsanis, C.; Omran, H.; Chernikova, V.; Shekhah, O.; Belmabkhout, Y.; Buttner, U.; Eddaoudi, M.; Salama, K.N. Insights on capacitive interdigitated electrodes coated with MOF thin films humidity and VOCs sensing as a case study. Sensors 2015, 15, 18153–18166. [Google Scholar] [CrossRef] [PubMed]
- Arshak, K.; Gill, E.; Arshak, A.; Korostynska, O. Investigation of tin oxides as sensing layers in conductimetric interdigitated pH sensors. Sens. Actuators B Chem. 2007, 127, 42–53. [Google Scholar] [CrossRef]
- Lian, Y.; He, F.; Wang, H.; Tong, F. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of staphylococcus aureus. Biosens. Bioelectron. 2015, 65, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Fok, M.; Bashir, M.; Fraser, H.; Strouther, N.; Mason, A. A novel microwave sensor to detect specific biomarkers in human cerebrospinal fluid and their relationship to cellular ischemia during thoracoabdominal aortic aneurysm repair. J. Med. Syst. 2015, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Iezekiel, S. Microwave Photonics: Devices and Applications; John Wiley & Sons Ltd: West Sussex, UK, 2009. [Google Scholar]
- Islam, T.; Nimal, A.T.; Mittal, U.; Sharma, M.U. A micro interdigitated thin film metal oxide capacitive sensor for measuring moisture in the range of 175–625 ppm. Sens. Actuators B Chem. 2015, 221, 357–364. [Google Scholar] [CrossRef]
- Qu, W.; Wlodarski, W. A thin-film sensing element for ozone, humidity and temperature. Sens. Actuators B Chem. 2000, 64, 42–48. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; Fernández-Salmerón, J.; Banqueri, J.; López-Villanueva, J.; Capitan-Vallvey, L.F.; Palma, A.J. A novel electrode structure compared with interdigitated electrodes as capacitive sensor. Sens. Actuators B Chem. 2014, 204, 552–560. [Google Scholar] [CrossRef]
- Steffens, C.; Manzoli, A.; Paschoalin, R.T.; Tiggemann, L.; Steffens, J.; Teixeira, E.; de Paula Herrmann, P.S. Tracing paper substrate used for development of interdigitated graphite electrode and its application as humidity sensor. Synth. Met. 2013, 183, 36–39. [Google Scholar] [CrossRef]
- Islam, T.; Mittal, U.; Nimal, A.T.; Sharma, M.U. A nanoporous thin-film miniature interdigitated capacitive impedance sensor for measuring humidity. Int. J. Smart Nano Mater. 2014, 5, 169–179. [Google Scholar] [CrossRef]
- Yang, T.; Yu, Y.Z.; Zhu, L.S.; Wu, X.; Wang, X.H.; Zhang, J. Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B Chem. 2015, 208, 327–333. [Google Scholar] [CrossRef]
- Arshak, K.; Morris, D.; Arshak, A.; Korostynska, O.; Moorea, E. PVB, PVAc and PS pressure sensors with interdigitated electrodes. Sens. Actuators A Phys. 2006, 132, 199–206. [Google Scholar] [CrossRef]
- Wu, H.D.; Zhang, Z.; Barnes, F.; Jackson, C.M.; Kain, A.; Cuchiaro, J.D. Voltage tunable capacitors using high temperature superconductors and ferroelectrics. IEEE Trans. Appl. Supercond. 1994, 4, 156–160. [Google Scholar]
- Korostynska, O.; Mason, A.; Al-Shamma, A.L. Flexible microwave sensors for realtime analysis of water contaminants. J. Electromagn. Wave 2013, 27, 2075–2089. [Google Scholar] [CrossRef]
- Riu, A., Jr.; dos Santos, D.S., Jr.; Wohnrath, K.; Di Tommazo, R.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N., Jr.; Taylor, D.M.; Mattoso, L.H.C. Artificial taste sensor: efficient combination of sensors made from langmuir-blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 2002, 18, 239–245. [Google Scholar]
- Pfaffmann, C. The sense of taste. In Handbook of Physiology, Section 1, Neurophysiology; American Physiological Society: Washington, DC, USA, 1959; Volume 1, p. 507. [Google Scholar]
- Kawamura, Y.; Kare, M.R. Umami: A Basic Taste: Physiology, Biochemistry, Nutrition, Food Science (Food Science and Technology); Marcel Dekker Inc.: New York, NY, USA, 1987. [Google Scholar]
- Zheng, J.Y.; Keeney, M.P. Taste masking analysis in pharmaceutical formulation development using an electronic tongue. Int. J. Pharm. 2006, 310, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Thalamus. Available online: https://www.boundless.com/physiology/textbooks/boundless-anatomy-and-physiology-textbook/the-central-nervous-system-cns-12/the-diencephalon-119/thalamus-645–9360/ (accessed on 21 March 2016).
- Thalamus. Available online: https://en.wikipedia.org/wiki/Thalamus (accessed on 21 March 2016).
- Gustatory and Olfactory Senses. Available online: http://michaeldmann.net/mann10.html (accessed on 21 March 2016).
- Chang, C.C.; Saad, B.; Surif, M.; Ahmad, M.N.; Shakaff, A.Y.M. Disposable e-tongue for the assessment of water quality in fish tanks. Sensors 2008, 8, 3665–3677. [Google Scholar] [CrossRef]
- Kundu, P.K.; Kundu, M.J. The e-tongue-based classification and authentication of mineral water samples using cross-correlation-based PCA and Sammon’s nonlinear mapping. J. Chemom. 2013, 27, 379–393. [Google Scholar] [CrossRef]
- Masnan, M.J.; Zakaria, A.; Shakaff, A.Y.M.; Mahat, N.I.; Hamid, H.; Subari, N.; Saleh, J.M. Principal component analysis—A realization of classification success in multi sensor data fusion. Available online: http://cdn.intechopen.com/pdfs/30421.pdf (accessed on 21 March 2016).
- Kalit, M.T.; Marković, K.; Kalit, S.; Vahčić, N.; Havranek, J. Application of electronic nose and electronic tongue in the dairy industry. Mljekarstvo 2014, 64, 228–244. [Google Scholar] [CrossRef]
- Moreno-Barón, L.; Cartas, R.; Merkoçi, A.; Alegret, S.; Gutiérrez, J.M.; Leija, L.; Hernandez, P.R.; Muñoz, R.; del Valle, M. Data compression for a voltammetric electronic tongue modelled with artificial neural networks. Anal. Lett. 2005, 38, 2189–2206. [Google Scholar] [CrossRef]
- Gil-Sánchez, L.; Garrigues, J.; Garcia-Breijo, E.; Grau, R.; Aliño, M.; Baigts, D.; Barat, J.M. Artificial neural networks (Fuzzy ARTMAP) analysis of the data obtained with an electronic tongue applied to a ham-curing process with different salt formulations. Appl. Soft. Comput. 2015, 30, 421–429. [Google Scholar] [CrossRef]
- Buratti, S.; Ballabio, D.; Benedetti, S.; Cosio, M.S. Prediction of italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of genetic algorithm regression models. Food Chem. 2007, 100, 211–218. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, X.; Zhang, L.; Gao, X.; Li, H.; Shi, J.; Li, X. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network. Exp. Ther. Med. 2014, 7, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
- Sipos, L.; Gere, A.; Szollosi, D.; Kovacs, Z.; Kokai, Z.; Fekete, A. Sensory evaluation and electronic tongue for sensing flavored mineral water taste attributes. J. Food Sci. 2013, 78, S1602–S1608. [Google Scholar] [CrossRef] [PubMed]
- Abu-Abed, A.S.; Lindquist, R.G. Capacitive interdigital sensor with inhomogeneous nematic liquid crystal film. Prog. Electromagn. Res. B 2008, 7, 75–87. [Google Scholar] [CrossRef]
- Igreja, R.; Dias, C.J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A Phys. 2004, 112, 291–301. [Google Scholar] [CrossRef]
- Igreja, R.; Dias, C.J. Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness. Sens. Actuators B Chem. 2006, 115, 69–78. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. What is solvatochromism. J. Phys. Chem. B 2010, 114, 17128–17135. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, K.A.; Storey, I.A.; Hendricks, A.E.; Pandey, S.; Pandey, S. Behavior of the solvatochromic probes Reichardt’s dye, pyrene, dansylamide, Nile red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF6. Green Chem. 2001, 3, 210–215. [Google Scholar] [CrossRef]
- Deye, J.F.; Berger, T.A.; Anderson, A.G. Nile red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids. Anal. Chem. 1990, 62, 615–622. [Google Scholar] [CrossRef]
- Macquarrie, D.J.; Tavener, S.J.; Gray, G.W.; Heath, P.A.; Rafelt, J.S.; Saulzet, S.I.; Hardy, J.J.E.; Clark, J.H.; Sutra, P.; Brunel, D.; et al. The use of Reichardt’s dye as an indicator of surface polarity. New J. Chem. 1999, 23, 725–731. [Google Scholar] [CrossRef]
- Rauf, M.A.; Hisaindee, S. Studies on solvatochromic behavior of dyes using spectral techniques. J. Mol. Struct. 2013, 1042, 45–56. [Google Scholar] [CrossRef]
- Rosenthal, I.; Peretz, P.; Muszkat, K.A. Thermochromic and hyperchromic effects in Rhodamine B solutions. Phys. Chem. 1979, 83, 350–353. [Google Scholar] [CrossRef]
- Hinckley, D.A.; Seybold, P.G.; Borris, D.P. Solvatochromism and thermochromism of Rhodamine solutions. Spectrochim. Acta Mol. Biomol. Spectrosc. 1986, 42, 747–754. [Google Scholar] [CrossRef]
- Khan, Md.R.R.; Kang, B.H.; Yeom, S.H.; Kwon, D.H.; Kang, S.W. Fiber-optic pulse width modulation sensor for low concentration VOC gas. Sens. Actuators B Chem. 2013, 188, 689–696. [Google Scholar] [CrossRef]
- Khan, Md.R.R.; Kang, S.W. A high sensitivity and wide dynamic range fiber-optic sensor for low-concentration VOC gas detection. Sensors 2014, 14, 23321–23336. [Google Scholar] [CrossRef] [PubMed]
- Khan, Md.R.R.; Kang, B.H.; Lee, S.W.; Kim, S.H.; Yeom, S.H.; Lee, S.H.; Kang, S.W. Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds. Opt. Express. 2013, 21, 20119–20129. [Google Scholar] [CrossRef] [PubMed]
- Khan, Md.R.R.; Kang, S.W. Highly sensitive fiber-optic volatile organic compound gas sensor using a solvatochromic-dye containing polymer waveguide based on pulse-width modulation technique. Sens. Lett. 2015, 13, 663–668. [Google Scholar] [CrossRef]
- Bowen, R. Physiology of Taste. Available online: http://www.vivo.colostate.edu/hbooks/pathphys/digestion/pregastric/taste.html (accessed on 21 March 2016).
- Ha, D.; Sun, Q.; Su, K.; Wan, H.; Li, H.; Xu, N.; Sun, F.; Zhuang, L.; Hu, N.; Wang, P. Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens. Actuators B Chem. 2015, 207, 1136–1146. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, B.; Hu, L.; Zhuang, L.; Hu, N.; Wang, P. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain-machine interface. Biosens. Bioelectron. 2016, 78, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Zhang, B.; Hu, N.; Wang, P. Detection and classification of tastants in vivo using a novel bioelectronic tongue in combination with brain-machine interface. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Conference on Sensing Technology, Milan, Italy, 25–29 August 2015; pp. 7550–7553.
- Khan, M.R.R.; Kang, S.W. Highly sensitive multi-channel IDC sensor array for low concentration taste detection. Sensors 2015, 15, 13201–13221. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.R.; Khalilian, A.; Kang, S.W. Fast, highly-sensitive, and wide-dynamic-range interdigitated capacitor glucose biosensor using solvatochromic dye-containing sensing membrane. Sensors 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Adhikari, B. Taste sensing with polyacrylamide grafted cellulose. J. Sci. Ind. Res. India 2006, 65, 237–243. [Google Scholar]
- Verrelli, G.M. Electronic Tongue Systems for Food and Environmental Applications. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.3110&rep=rep1&type=pdf (accessed on 21 March 2016).
- Toko, K. Biomimetic Sensor Technology; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
Taste | Chemical Compounds |
---|---|
Sweet | Sugar, fructose, saccharin, sucrose, glucose, few amino acids, l-alanine, alcohols. |
Salt | Metal ions (inorganic salts) : NaCl, KCl, KNO3 |
Sour | Acids (detachment of H+ in solution): HCl, H2SO4, CH3COOH, etc. |
Bitter | Alkaloids (nicotine, quinine, caffeine) and non-alkaloids (aspirin), MgCl2, urea, l-tryptophan, etc. |
Umami | Amino acids (glutamate) |
No. of Stage | Processing Level | Name of the Sensing Mechanism | |
---|---|---|---|
Humans Tongue | Electronic Tongue | ||
1 | Receptor level | Buds | Membranes of the sensing elements |
2 | Circuit level | Neural transmission | Transducer |
3 | Perceptual level | Cognition in the thalamus | Computer as well as statistical analysis |
Sensor ID | Solvatochromic Dye | Polymer | Solvent |
---|---|---|---|
S1 | Nile-red | PVC | DMAC |
S2 | Reichardt’s dye (R-dye) | PVC | DMAC |
S3 | Auramine O | PVC | DMAC |
S4 | Rhodamine B | PVC | DMAC |
No. | Sensing System | Parameters | Ref. | ||||
---|---|---|---|---|---|---|---|
Dynamic Range Width | Sensitivity (Umami) | Linearity | Response Time | Reproducibility (RSD) | |||
1 | Proposed Electronic Tongue | 1 µM–1 M | 16.19 mV/decade | 0.985 | 6 s | 0.029 | This work |
2 | Potentiometry | 0.1 µM–100 mM | - | poor | > 6.45 min | - | [92] |
3 | C-CLBT | 1 fM–1 mM | 12.2 µA/decade | good | - | - | [27] |
4 | Electronic Tongue (SA402) | 1 µM–1 M | 13.0 mV/decade | - | 20 s | - | [93,94] |
5 | Optical Fiber | 0.1 µM–10 mM | - | - | 10 s | poor | [29] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.R.R.; Khalilian, A.; Kang, S.-W. A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes. Sensors 2016, 16, 668. https://doi.org/10.3390/s16050668
Khan MRR, Khalilian A, Kang S-W. A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes. Sensors. 2016; 16(5):668. https://doi.org/10.3390/s16050668
Chicago/Turabian StyleKhan, Md. Rajibur Rahaman, Alireza Khalilian, and Shin-Won Kang. 2016. "A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes" Sensors 16, no. 5: 668. https://doi.org/10.3390/s16050668
APA StyleKhan, M. R. R., Khalilian, A., & Kang, S. -W. (2016). A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes. Sensors, 16(5), 668. https://doi.org/10.3390/s16050668