Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM
Abstract
:1. Introduction
2. Materials and Methods
2.1. MIP Synthesis
2.2. QCM Manufacturing and Measuring Setup
3. Results and Discussion
3.1. Development of MIP Thin Films
3.2. Generating MIP Nanoparticles
3.3. Selectivity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AcCN | acetonitrile |
AFM | atomic force microscopy |
AIBN | azoisobutyronitrile |
DMF | dimethyl formamide |
EGDMA | ethylene glycol dimethacrylate |
MIP | molecularly imprinted polymer |
NIP | non-imprinted polymer |
NP | nanoparticles |
QCM | quartz crystal microbalance |
rH | relative humidity |
VOC | volatile organic compound |
References
- Pickrell, J.A.; Mokler, B.V.; Griffis, L.C.; Hobbs, C.H.; Bathija, A. Formaldehyde release rate coefficients from selected consumer products. Environ. Sci. Technol. 1983, 17, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Pickrell, J.A.; Griffis, L.C.; Mokler, B.V.; Kanapilly, G.M.; Hobbs, C.H. Formaldehyde release from selected consumer products—Influence of chamber loading, multiple products, relative-humidity, and temperature. Environ. Sci. Technol. 1984, 18, 682–686. [Google Scholar] [CrossRef]
- Gunschera, J.; Mentese, S.; Salthammer, T.; Andersen, J.R. Impact of building materials on indoor formaldehyde levels: Effect of ceiling tiles, mineral fiber insulation and gypsum board. Build. Environ. 2013, 64, 138–145. [Google Scholar] [CrossRef]
- Salthammer, T. Formaldehyde in the ambient atmosphere: From an indoor pollutant to an outdoor pollutant? Angew. Chem. Int. Ed. 2013, 52, 3320–3327. [Google Scholar] [CrossRef] [PubMed]
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef] [PubMed]
- Descamps, M.N.; Bordy, T.; Hue, J.; Mariano, S.; Nonglaton, G.; Schultz, E.; Tran-Thi, T.H.; Vignoud-Despond, S. Real-time detection of formaldehyde by a sensor. Sens. Actuators B Chem. 2012, 170, 104–108. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Cong, S.Y.; Qi, J.Q.; Xu, B.K. An enrichment method to detect low concentration formaldehyde. Sens. Actuators B Chem. 2008, 134, 1010–1015. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Qi, J.Q.; Yao, P.J. Silicon-based micro-gas sensors for detecting formaldehyde. Sens. Actuators B Chem. 2009, 136, 399–404. [Google Scholar] [CrossRef]
- Chung, P.R.; Tzeng, C.T.; Ke, M.T.; Lee, C.Y. Formaldehyde gas sensors: A review. Sensors 2013, 13, 4468–4484. [Google Scholar] [CrossRef] [PubMed]
- Boersma, A.; van Ee, R.J.; Stevens, R.S.A.; Saalmink, M.; Charlton, M.D.B.; Pollard, M.E.; Chen, R.; Kontturi, V.; Karioja, P.; Alajoki, T. Detection of low concentration formaldehyde gas by photonic crystal sensor fabricated by nanoimprint process in polymer material. Proc. SPIE 2014, 9141. [Google Scholar] [CrossRef]
- Haupt, K.; Linares, A.V.; Bompart, M.; Bernadette, T.S.B. Molecularly imprinted polymers. Top. Curr. Chem. 2012, 325, 1–28. [Google Scholar]
- Li, S.; Ge, Y.; Piletsky, S.A.; Lunec, J. (Eds.) MIP-based sensors. In Molecularly Imprinted Sensors: Overview and Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 339–354.
- Latif, U.; Rohrer, A.; Lieberzeit, P.A.; Dickert, F.L. Qcm gas phase detection with ceramic materials-VOCs and oil vapors. Anal. Bioanal. Chem. 2011, 400, 2457–2462. [Google Scholar] [CrossRef] [PubMed]
- Schirhagl, R.; Podlipna, D.; Lieberzeit, P.A.; Dickert, F.L. Comparing biomimetic and biological receptors for insulin sensing. Chem. Commun. 2010, 46, 3128–3130. [Google Scholar] [CrossRef] [PubMed]
- Wangchareansak, T.; Sangma, C.; Choowongkomon, K.; Dickert, F.; Lieberzeit, P. Surface molecular imprints of WGA lectin as artificial receptors for mass-sensitive binding studies. Anal. Bioanal. Chem. 2011, 400, 2499–2506. [Google Scholar] [CrossRef] [PubMed]
- Phan, N.V.H.; Sussitz, H.F.; Lieberzeit, P.A. Polymerization parameters influencing the QCM response characteristics of BSA MIP. Biosensors 2014, 4, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Chunta, S.; Suedee, R.; Lieberzeit, P.A. Low-density lipoprotein sensor based on molecularly imprinted polymer. Anal. Chem. 2016, 88, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Hayden, O.; Lieberzeit, P.A.; Blaas, D.; Dickert, F.L. Artificial antibodies for bioanalyte detection—Sensing viruses and proteins. Adv. Funct. Mater. 2006, 16, 1269–1278. [Google Scholar] [CrossRef]
- Branger, C.; Meouche, W.; Margaillan, A. Recent advances on ion-imprinted polymers. React. Funct. Polym. 2013, 73, 859–875. [Google Scholar] [CrossRef]
- Bajwa, S.Z.; Dumler, R.; Lieberzeit, P.A. Molecularly imprinted polymers for conductance sensing of Cu2+ in aqueous solutions. Sens. Actuators B Chem. 2014, 192, 522–528. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.J.; Zhou, X.D.; Hu, J.M. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J. Colloid. Interf. Sci. 2005, 284, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lai, J.P.; Fung, Y.S. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction. J. Chromatogr. A 2014, 1358, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Antwi-Boampong, S.; Peng, J.S.; Carlan, J.; BelBruno, J.J. A molecularly imprinted fluoral-p/polyaniline double layer sensor system for selective sensing of formaldehyde. IEEE Sens. J. 2014, 14, 1490–1498. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Liu, Q.J.; Zhang, J.; Zhu, Q.; Zhu, Z.Q. A highly sensitive and selective formaldehyde gas sensor using a molecular imprinting technique based on Ag-LaFeO3. J. Mater. Chem. C 2014, 2, 10067–10072. [Google Scholar] [CrossRef]
- Iqbal, N.; Afzal, A.; Mujahid, A. Layer-by-layer assembly of low-temperature-imprinted poly(methacrylic acid)/gold nanoparticle hybrids for gaseous formaldehyde mass sensing. RSC Adv. 2014, 4, 43121–43130. [Google Scholar] [CrossRef]
- Mustafa, G.; Lieberzeit, P.A. Molecularly imprinted polymer-Ag2S nanoparticle composites for sensing volatile organics. RSC Adv. 2014, 4, 12723–12728. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B Chem. 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Poma, A.; Turner, A.P.F.; Piletsky, S.A. Advances in the manufacture of mip nanoparticles. Trends Biotechnol. 2010, 28, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Kotova, K.; Hussain, M.; Mustafa, G.; Lieberzeit, P.A. MIP sensors on the way to biotech applications: Targeting selectivity. Sens. Actuators B Chem. 2013, 189, 199–202. [Google Scholar] [CrossRef]
- Hall, N.E.; Smith, B.J. High-level ab initio molecular orbital calculations of imine formation. J. Phys. Chem. A 1998, 102, 4930–4938. [Google Scholar] [CrossRef]
- Hussain, M.; Iqbal, N.; Lieberzeit, P.A. Acidic and basic polymers for molecularly imprinted folic acid sensors—QCM studies with thin films and nanoparticles. Sens. Actuators B Chem. 2013, 176, 1090–1095. [Google Scholar] [CrossRef]
Sensor | HCHO | CH2Cl2 | MeOH | Formic Acid | Acetone | EtOH | AcCHO | AcCN |
---|---|---|---|---|---|---|---|---|
Thin film (0% rH) | −65 ± 2 Hz | Below noise | Below noise | Below noise | Below noise | Below noise | Below noise | Below noise |
NP (50% rH) | −24 ± 1 Hz | Below noise | Below noise | Below noise | Below noise | Below noise | Below noise | Below noise |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Kotova, K.; Lieberzeit, P.A. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors 2016, 16, 1011. https://doi.org/10.3390/s16071011
Hussain M, Kotova K, Lieberzeit PA. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors. 2016; 16(7):1011. https://doi.org/10.3390/s16071011
Chicago/Turabian StyleHussain, Munawar, Kira Kotova, and Peter A. Lieberzeit. 2016. "Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM" Sensors 16, no. 7: 1011. https://doi.org/10.3390/s16071011
APA StyleHussain, M., Kotova, K., & Lieberzeit, P. A. (2016). Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors, 16(7), 1011. https://doi.org/10.3390/s16071011