Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors
Abstract
:1. Introduction
2. MIP Based-Quartz Crystal Microbalance (QCM) Sensors
2.1. MIP-Based QCM Sensors for Biological Applications
2.2. MIP-Based QCM Sensors for Food and Beverage Applications
2.3. MIP-Based QCM Sensors for Environmental Applications
3. Conclusions and Future Trends
Conflicts of Interest
References
- Phongphanphanee, S.; Yoshida, N.; Hirata, F. Molecular recognition explored by a statistical-mechanics theory of liquids. Curr. Pharm. Des. 2011, 17, 1740–1757. [Google Scholar] [CrossRef] [PubMed]
- Cheremisinoff, P. Advances in Environmental Control Technology: Health and Toxicology; Gulf Professional Publishing: Houston, TX, USA, 1997. [Google Scholar]
- Sellergren, B. Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry: Techniques and Instrumentation in Analytical Chemistry; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Kupai, J.; Razali, M.; Büyüktiryaki, S.; Keçili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem. 2017, 8, 666–673. [Google Scholar] [CrossRef]
- Kryscioa, D.R.; Peppas, N.A. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 2012, 8, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, M.; Fu, Y.; Yu, H.; Di, D. Preparation of quercetin molecularly imprinted polymers. Des. Monomers Polym. 2012, 15, 93–111. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F. Enhanced and selective adsorption of heavy metal ions on ion-imprinted simultaneous interpenetrating network hydrogels. Des. Monomers Polym. 2014, 17, 19–25. [Google Scholar] [CrossRef]
- Long, J.-P.; Chen, Z.-B.; Liu, X.-J.; Du, X.Y. Preparation and adsorption property of solanesol molecular imprinted polymers. Des. Monomers Polym. 2015, 18, 641–649. [Google Scholar] [CrossRef]
- Shen, X.; Zhu, L.; Wang, N.; Ye, L.; Tang, H. Molecular imprinting for removing highly toxic organic pollutants. Chem. Commun. 2012, 48, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Uludağ, Y.; Piletsky, S.A.; Turner, A.P.F.; Cooper, M.A. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. FEBS J. 2007, 274, 5471–5480. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Zhang, Z.; Nie, L.; Yao, S. Electrosynthesis of imprinted polyacrylamide membranes for the stereospecific L-histidine sensor and its characterization by AC impedance spectroscopy and piezoelectric quartz crystal technique. J. Biochem. Biophys. Methods 2004, 59, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Dickert, F.; Tortschano, M.; Bulst, W.E.; Fischerauer, G. Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal. Chem. 1999, 71, 4559–4563. [Google Scholar] [CrossRef]
- Dickert, F.L.; Hayden, O. Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers. Anal. Chem. 2002, 74, 1302–1306. [Google Scholar] [CrossRef] [PubMed]
- Seifner, A.; Lieberzeit, P.; Jungbauer, C.; Dickert, F.L. Synthetic receptors for selectively detecting erythrocyte ABO subgroups. Anal. Chim. Acta 2009, 651, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Tai, D.F.; Lin, C.Y.; Wu, T.Z.; Huang, J.H.; Shu, P.Y. Artificial receptors in serologic tests for the early diagnosis of dengue virus infection. Clin. Chem. 2006, 52, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Tai, D.F.; Jhang, M.H.; Chen, G.Y.; Wang, S.C.; Lu, K.H.; Lee, Y.D.; Liu, H.T. Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments. Anal. Chem. 2010, 82, 2290–2293. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhao, Z.; Chen, Y.; Gao, Z. Rapid detection of staphylococcal enterotoxin B by two-dimensional molecularly imprinted film-coated quartz crystal microbalance. Anal. Lett. 2012, 45, 283–295. [Google Scholar] [CrossRef]
- Lu, C.-H.; Zhang, Y.; Tang, S.-F.; Fang, Z.-B.; Yang, H.-H.; Chen, X.; Chen, G.-N. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens. Bioelectron. 2012, 31, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Li, X.; Ma, X.; Ou, G.; Gao, Z. Rapid and multiple detections of staphylococcal enterotoxins by two-dimensional molecularly imprinted film-coated QCM sensor. Sens. Actuators B Chem. 2014, 191, 326–331. [Google Scholar] [CrossRef]
- Phan, N.; Sussitz, H.; Lieberzeit, P. Polymerization Parameters Influencing the QCM Response Characteristics of BSA MIP. Biosensors 2014, 4, 161–171. [Google Scholar] [CrossRef] [PubMed]
- EL-Sharif, H.F.; Aizawa, H.; Reddy, S.M. Spectroscopic and quartz crystal microbalance (QCM) characterisation of protein-based MIPs. Sens. Actuators B Chem. 2015, 206, 239–245. [Google Scholar] [CrossRef]
- Diltemiz, S.E.; Hür, D.; Keçili, R.; Ersöz, A.; Say, R. New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIP-based QCM sensors. Analyst 2013, 138, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Latif, U.; Qian, J.; Can, S.; Dickert, F. Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances—From Molecules to Cells. Sensors 2014, 14, 23419–23438. [Google Scholar] [CrossRef] [PubMed]
- Alenus, J.; Galar, P.; Ethirajan, A.; Horemans, F.; Weustenraed, A.; Cleij, T.J.; Wagner, P. Detection of L-nicotine with dissipation mode quartz crystal microbalance using molecular imprinted polymers. Phys. Status Solidi 2012, 209, 905–910. [Google Scholar] [CrossRef]
- Alenus, J.; Ethirajan, A.; Horemans, F.; Weustenraed, A.; Csipai, P.; Gruber, J.; Peeters, M.; Cleij, T.J.; Wagner, P. Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of l-nicotine in diluted saliva and urine samples. Anal. Bioanal. Chem. 2013, 405, 6479–6487. [Google Scholar] [CrossRef] [PubMed]
- Croux, D.; Weustenraed, A.; Pobedinskas, P.; Horemans, F.; Diliën, H.; Haenen, K.; Cleij, T.; Wagner, P.; Thoelen, R.; De Ceuninck, W. Development of multichannel quartz crystal microbalances for MIP-based biosensing. Phys. Status Solidi Appl. Mater. Sci. 2012, 209, 892–899. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, E.; Yang, X. Capacitive detection of glucose using molecularly imprinted polymers. Biosens. Bioelectron. 2001, 16, 179–185. [Google Scholar] [CrossRef]
- Panasyuk, T.L.; Mirsky, V.M.; Piletsky, S.A.; Wolfbeis, O.S. Electropolymerized molecularly imprinted polymers as receptors layers in capacitive chemical sensors. Anal. Chem. 1999, 71, 4609–4613. [Google Scholar] [CrossRef]
- Özcan, L.; Sahin, Y. Determination of a paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens. Actuators B Chem. 2007, 127, 362–369. [Google Scholar] [CrossRef]
- Lenain, P.; De Saeger, S.; Mattiasson, B.; Hedström, M. Affinity sensor based on immobilized molecular imprinted synthetic recognition elements. Biosens. Bioelectron. 2015, 69, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Yarman, A.; Dechtrirat, D.; Bosserdt, M.; Jetzschmann, K.J.; Gajovic-Eichelmann, N.; Scheller, F.W. Cytochrome c-derived hybrid systems based on molecularly imprinted polymers. Electroanalysis 2015, 27, 573–586. [Google Scholar] [CrossRef]
- Apodaca, D.C.; Pernites, R.B.; Ponnapati, R.R.; Del Mundo, F.R.; Advincula, R.C. Electropolymerized molecularly imprinted polymer films of a bis-terthiophene dendron: Folic Acid quartz crystal microbalance sensing. ACS Appl. Mater. Interfaces 2011, 3, 191–203. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, D.; Guo, T. Construction of a novel macroporous imprinted biosensor based on quartz crystal microbalance for ribonuclease A detection. Biosens. Bioelectron. 2013, 42, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Ersöz, A.; Diltemiz, S.E.; Özcan, A.A.; Denizli, A.; Say, R. 8-OHdG sensing with MIP based solid phase extraction and QCM technique. Sens. Actuators B Chem. 2009, 137, 7–11. [Google Scholar] [CrossRef]
- Lee, M.H.; Thomas, J.L.; Tseng, H.Y.; Lin, W.C.; Liu, B.D.; Lin, H.Y. Sensing of digestive proteins in saliva with a molecularly imprinted poly(ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor. ACS Appl. Mater. Interfaces 2011, 3, 3064–3071. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Guo, T.; Yang, Y.; Zhang, Z. Surface imprinted macroporous film for high performance protein recognition in combination with quartz crystal microbalance. Sens. Actuators B Chem. 2011, 153, 96–102. [Google Scholar] [CrossRef]
- Mirmohseni, A.; Shojaei, M.; Farbodi, M. Application of a quartz crystal nanobalance to the molecularly imprinted recognition of phenylalanine in solution. Biotechnol. Bioprocess Eng. 2008, 13, 592–597. [Google Scholar] [CrossRef]
- Diltemiz Emir, S.; Hür, D.; Ersöz, A.; Denizli, A.; Say, R. Designing of MIP based QCM sensor having thymine recognition sites based on biomimicking DNA approach. Biosens. Bioelectron. 2009, 25, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.K.; Hayashi, K. Polyacrylic acid polymer and aldehydes template molecule based MIPs coated QCM sensors for detection of pattern aldehydes in body odor. Sens. Actuators B Chem. 2015, 206, 471–487. [Google Scholar] [CrossRef]
- Sun, H.; Mo, Z.H.; Choy, J.T.S.; Zhu, D.R.; Fung, Y.S. Piezoelectric quartz crystal sensor for sensing taste-causing compounds in food. Sens. Actuators B Chem. 2008, 131, 148–158. [Google Scholar] [CrossRef]
- Iqbal, N.; Mustafa, G.; Rehman, A.; Biedermann, A.; Najafi, B.; Lieberzeit, P.A.; Dickert, F.L. QCM-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic MIP layers. Sensors 2010, 10, 6361–6376. [Google Scholar] [CrossRef] [PubMed]
- Dickert, F.L.; Hayden, O.; Bindeus, R.; Mann, K.J.; Blaas, D.; Waigmann, E. Bioimprinted QCM sensors for virus detection—Screening of plant sap. Anal. Bioanal. Chem. 2004, 378, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- Ebarvia, B.S.; Ubando, I.E.; Sevilla, F.B. Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer. Talanta 2015, 144, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem. 2015, 185, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhang, Y.; Pan, M.; Kong, L.; Wang, S. Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods. J. Agric. Food Chem. 2014, 62, 5269–5274. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Fang, Y.; Gao, Z. Determination of daminozide in apple sample by mip-coated piezoelectric quartz sensor. Anal. Lett. 2007, 40, 1013–1021. [Google Scholar] [CrossRef]
- Sun, H.; Fung, Y. Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements. Anal. Chim. Acta 2006, 576, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila, M.; Zougagh, M.; Escarpa, A.; Ríos, A. Supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer for the determination of vanillin in food samples. Talanta 2007, 72, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Liu, G.; Yang, Y.; Wang, S. Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin. Sens. Actuators B Chem. 2016, 230, 272–280. [Google Scholar] [CrossRef]
- Bagheri, H.; Mohammadi, A.; Salemi, A. On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography. Anal. Chim. Acta 2004, 513, 445–449. [Google Scholar] [CrossRef]
- Bonwick, G.A.; Sun, C.; Abdullatif, P.; Baugh, P.J.; Smith, C.J.; Armitage, R.; Davies, D.H. Determination of permethrin and cyfluthrin in water and sediment by gas chromatography-mass spectrometry operated in the negative chemical-ionization mode. J. Chromatogr. A 1995, 707, 293–302. [Google Scholar] [CrossRef]
- Hladik, M.L.; Smalling, K.L.; Kuivila, K.M. A multi-residue method for the analysis of pesticides and pesticide degradates in water using HLB solid-phase extraction and gas chromatography-ion trap mass spectrometry. Bull. Environ. Contam. Toxicol. 2008, 80, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Vasas, G.; Szydlowska, D.; Gáspár, A.; Welker, M.; Trojanowicz, M.; Borbély, G. Determination of microcystins in environmental samples using capillary electrophoresis. J. Biochem. Biophys. Methods 2006, 66, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Percival, C.J.; Stanley, S.; Galle, M.; Braithwaite, A.; Newton, M.I.; McHale, G.; Hayes, W. Molecular-imprinted polymer-coated quartz crystal microbalances for the detection of terpenes. Anal. Chem. 2001, 73, 4225–4228. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, R.A.; Tsow, F.; Wang, R.; Forzani, E.S.; Tao, N. Hybrid separation and detection device for analysis of benzene, toluene, tthylbenzene, and xylenes in complex samples. Anal. Chem. 2009, 81, 8930–8935. [Google Scholar] [CrossRef] [PubMed]
- Dickert, F.L.; Forth, P.; Lieberzeit, P.A.; Voigt, G. Quality control of automotive engine oils with mass-sensitive chemical sensors—QCMs and molecularly imprinted polymers. Fresenius J. Anal. Chem. 2000, 366, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Vergara, A.V.; Pernites, R.B.; Pascua, S.; Binag, C.A.; Advincula, R.C. QCM sensing of a chemical nerve agent analog via electropolymerized molecularly imprinted polythiophene films. J. Polym. Sci. A Polym. Chem. 2012, 50, 675–685. [Google Scholar] [CrossRef]
- Özkütük, E.B.; Diltemiz, S.E.; Özalp, E.; Ersöz, A.; Say, R. Silan based paraoxon memories onto QCM electrodes. J. Ind. Eng. Chem. 2013, 19, 1788–1792. [Google Scholar] [CrossRef]
- Özkütük, E.B.; Diltemiz, S.E.; Özalp, E.; Gedikbey, T.; Ersöz, A. Paraoxon imprinted biopolymer based QCM sensor. Mater. Chem. Phys. 2013, 139, 107–112. [Google Scholar] [CrossRef]
- Eslami, M.R.; Alizadeh, N. A dual usage smart sorbent/recognition element based on nanostructured conducting molecularly imprinted polypyrrole for simultaneous potential-induced nanoextraction/determination of ibuprofen in biomedical samples by quartz crystal microbalance sensor. Sens. Actuators B Chem. 2015, 220, 880–887. [Google Scholar] [CrossRef]
- Kim, J.M.; Yang, J.C.; Park, J.Y. Quartz crystal microbalance (QCM) gravimetric sensing of theophylline via molecularly imprinted microporous polypyrrole copolymers. Sens. Actuators B Chem. 2015, 206, 50–55. [Google Scholar] [CrossRef]
- Alizadeh, N. Nanostructured conducting molecularly imprinted polypyrrole based quartz crystal microbalance sensor for naproxen determination and its electrochemical impedance study. RSC Adv. 2016, 6, 9387–9395. [Google Scholar]
- Gao, N.; Dong, J.; Liu, M.; Ning, B.; Cheng, C.; Guo, C.; Zhou, C.; Peng, Y.; Bai, J.; Gao, Z. Development of molecularly imprinted polymer films used for detection of profenofos based on a quartz crystal microbalance sensor. Analyst 2012, 137, 1252–1258. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhou, L.; Wang, Y.; Li, C.; Yao, J.; Zhang, W.; Zhang, O.; Li, M.; Li, H.; Dong, W.F. Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs. Talanta 2015, 131, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Yola, M.L.; Eren, T.; Atar, N. Selective QCM sensor based on atrazine imprinted polymer: Its application to wastewater sample. Sens. Actuators B Chem. 2015, 218, 215–221. [Google Scholar] [CrossRef]
- Piacham, T.; Josell, A.; Arwin, H.; Prachayasittikul, V.; Ye, L. Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal. Chim. Acta 2005, 536, 191–196. [Google Scholar] [CrossRef]
- Latif, U.; Mujahid, A.; Afzal, A.; Sikorski, R.; Lieberzeit, P.A.; Dickert, F.L. Dual and tetraelectrode QCMs using imprinted polymers as receptors for ions and neutral analytes. Anal. Bioanal. Chem. 2011, 400, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.P.; Zhang, C.J. Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution. Sens. Actuators B Chem. 2009, 142, 210–215. [Google Scholar] [CrossRef]
- Suedee, R.; Intakong, W.; Lieberzeit, P.A.; Wanichapichart, P.; Chooto, P.; Dickert, F.L. Trichloroacetic acid-imprinted polypyrrole film and its property in piezoelectric quartz crystal microbalance and electrochemical sensors to application for determination of haloacetic acids disinfection by-product in drinking water. J. Appl. Polym. Sci. 2007, 106, 3861–3871. [Google Scholar] [CrossRef]
- Mirmohseni, A.; Houjaghan, M.R. Measurement of the pesticide methomyl by modified quartz crystal nanobalance with molecularly imprinted polymer. J. Environ. Sci. Health B 2013, 48, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, M. QCM sensing of melphalan via electropolymerized molecularly imprinted polythiophene films. Biosens. Bioelectron. 2015, 74, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Tiu, B.D.B.; Kawamura, A.; Advincula, R.C.; Miyata, T. QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix. Polym. J. 2016, 48, 525–532. [Google Scholar] [CrossRef]
- Hussain, M. Ultra-sensitive detection of heparin via a PTT using plastic antibodies on QCM-D platform. RSC Adv. 2015, 5, 54963–54970. [Google Scholar] [CrossRef]
- Pan, M.; Fang, G.; Lu, Y.; Kong, L.; Yang, Y.; Wang, S. Molecularly imprinted biomimetic QCM sensor involving a poly(amidoamine) dendrimer as a functional monomer for the highly selective and sensitive determination of methimazole. Sens. Actuators B Chem. 2015, 207, 588–595. [Google Scholar] [CrossRef]
- Çiçek, Ç.; Yılmaz, F.; Özgür, E.; Yavuz, H.; Denizli, A. Molecularly imprinted quartz crystal microbalance sensor (QCM) for bilirubin detection. Chemosensors 2016, 4, 21–34. [Google Scholar] [CrossRef]
- Gültekin, A.; Karanfil, G.; Sönmezoglu, S.; Say, R. Development of a highly sensitive MIP based-QCM nanosensor for selective determination of cholic acid level in body fluids. Mat. Sci. Eng. C 2014, 42, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Hub, C.H.; Chou, T.C. Determination of albumin concentration by MIP-QCM sensor. Biosens. Bioelectron. 2004, 20, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Arenas, L.F.; Ebarvia, B.S.; Sevilla, F.B. Enantioselective piezoelectric quartz crystal sensor for d-methamphetamine based on a molecularly imprinted polymer. Anal. Bioanal. Chem. 2010, 397, 3155–3158. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Han, J.; Liu, Z.; Qu, L.; Gao, Z. Rapid detection of endosulfan by a molecularly imprinted polymer microsphere modified quartz crystal microbalance. Anal. Methods 2013, 5, 4442–4447. [Google Scholar] [CrossRef]
- Kong, L.J.; Pan, M.F.; Fang, G.Z.; He, X.I.; Yang, Y.K.; Dai, J.; Wang, S. Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination. Biosens. Bioelectron. 2014, 51, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Gültekin, A.; Karanfil, G.; Kuş, M.; Sönmezoğlu, S.; Say, R. Preparation of MIP-based QCM nanosensor for detection of caffeic acid. Talanta 2014, 119, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Yang, K.L. On-Line monitoring imidacloprid and thiacloprid in celery juice using quartz crystal microbalance. Anal. Chem. 2009, 81, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Şener, G.; Özgür, E.; Yılmaz, E.; Uzun, L.; Say, R.; Denizli, A. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens. Bioelectron. 2010, 26, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Yola, M.L.; Atar, N. A novel molecular imprinted nanosensor based quartz crystal microbalance for determination of kaempferol. Sens. Actuators B Chem. 2014, 194, 79–85. [Google Scholar] [CrossRef]
Reference | Composition of QCM Sensor | Target | Sample |
---|---|---|---|
Applications to Environmental Samples | |||
[68] | MIP film prepared by using functional monomer MAA on the sensor surface | Propranolol | Aqueous solutions |
[69] | MIP film prepared by using functional monomer MAA on the sensor surface | Cu2+ and Ni2+ ions | Aqueous solutions |
[70] | MIP film prepared by using functional monomer MAA on the sensor surface | Cu2+ | Wastewater |
[71] | MIP film prepared by using functional monomer pyrrole on the sensor surface | Trichloroacetic acid | Drinking water |
[72] | MIP film prepared by using functional monomer MAA on the sensor surface | Methomyl | Natural water |
[73] | MIP film prepared by using functional monomer 3-thiophene acetic acid (3-TAA) on the sensor surface | Melphalan | Aqueous solutions |
[74] | Cyclodextrin-modified poly(L-lysine) based- MIP film on the sensor surface | Bisphenol A | Aqueous solutions |
Applications to Biological Samples | |||
[75] | MIP film prepared by using functional monomer 1-Vinyl-2-pyrrolidone on the sensor surface | Heparin | Human plasma |
[76] | MIP film prepared by using functional monomer MAA and poly(amidoamine) dendrimer on the sensor surface | Methimazole | Human urine |
[77] | MIP film prepared by using functional monomer methacryloylamido tryptophan on the sensor surface | Bilirubin | Human plasma and Urine |
[78] | MIP film prepared by using functional monomer methacryloylamido histidine on the sensor surface | Cholic acid | Human serum and Urine |
[79] | MIP film prepared by using 3-dimethylaminopropyl methacrylamide as the functional monomer on the sensor surface | Albumin | Human serum |
[80] | MIP film prepared by using functional monomer MAA on the sensor surface | D-Methamphetamine | Human urine |
Applications to Food and Beverage Samples | |||
[81] | MIP microsphere modified QCM sensor | Endosulfan | Drinking water and milk |
[82] | MIP/poly(o-aminothiophenol) membrane/Au nanoparticles composite on the sensor surface | Ractopamine | Swine feed |
[83] | MIP film prepared by using functional monomer methacryloylamido antipyrine on the sensor surface | Caffeic acid | Tea, apple and potato |
[84] | MIP film on the surface of the alkanethiol modified-gold electrode | Thiacloprid | Celery Juice |
[85] | Gold electrode coated with molecularly imprinted nanoparticles prepared by using functional monomer methacryloylamido histidine | Lysozyme | Chicken egg white |
[86] | MIP film prepared by using methacryloylamidoaspartic acid as the monomer on the sensor surface | Kaempferol | Orange and apple juice |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emir Diltemiz, S.; Keçili, R.; Ersöz, A.; Say, R. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors. Sensors 2017, 17, 454. https://doi.org/10.3390/s17030454
Emir Diltemiz S, Keçili R, Ersöz A, Say R. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors. Sensors. 2017; 17(3):454. https://doi.org/10.3390/s17030454
Chicago/Turabian StyleEmir Diltemiz, Sibel, Rüstem Keçili, Arzu Ersöz, and Rıdvan Say. 2017. "Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors" Sensors 17, no. 3: 454. https://doi.org/10.3390/s17030454
APA StyleEmir Diltemiz, S., Keçili, R., Ersöz, A., & Say, R. (2017). Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors. Sensors, 17(3), 454. https://doi.org/10.3390/s17030454