Exploring the Efficacy of Platinum and Palladium Nanostructures for Organic Molecule Detection via Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Palladium and Platinum Nanostructures via Galvanic Displacement Method
2.3. Characterization
3. Results and Discussions
3.1. Characterization of Palladium and Platinum Nanostructures
3.2. Palladium and Platinum Nanostructures as SERS Platforms
4. Conclusion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carraro, C.; Maboudian, R.; Magagnin, L. Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surf. Sci. Rep. 2007, 62, 499–525. [Google Scholar] [CrossRef]
- Ali, H.O.; Christie, I.R.A. A Review of Electroless Gold Deposition. Gold Bull. 1984, 17, 118–127. [Google Scholar] [CrossRef]
- Magagnin, L.; Maboudian, R.; Carraro, C. Gold deposition by galvanic displacement on semiconductor surfaces: Effect of substrate on adhesion. J. Phys. Chem. B 2002, 106, 401–407. [Google Scholar] [CrossRef]
- Cerruti, M.; Doerk, G.; Hernandez, G.; Carraro, C.; Maboudian, R. Galvanic Deposition of Pt Clusters on Silicon: Effect of HF Concentration and Application as Catalyst for Silicon Nanowire Growth. Langmuir 2010, 26, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Tsai, M.; Hu, T.; Dai, B.; Feng, M. Selective copper metallization by electrochemical contact displacement with amorphous silicon film. Electrochem. Solid State Lett. 2001, 4, C47–C49. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, Y.; Xu, L.; Buriak, L. Constructing Metal-Based Structures on Nanopatterned Etched Silicon. ACS Nano 2011, 5, 5015–5024. [Google Scholar] [CrossRef] [PubMed]
- Fabre, B.; Hennous, L.; Ababou-Girard, S.; Meriadec, C. Electroless Patterned Assembly of Metal. Nanoparticles on Hydrogen-Terminated Silicon Surfaces for Applications in Photoelectrocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Porter, L.; Choi, H.; Schmeltzer, J.; Ribbe, A.; Elliott, L.; Buriak, J. Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies. Nano Lett. 2002, 2, 1369–1372. [Google Scholar] [CrossRef]
- Liu, F.; Green, M. Efficient SERS substrates made by electroless silver deposition into patterned silicon structures. J. Mater. Chem. 2004, 14, 1526–1532. [Google Scholar] [CrossRef]
- Lahiri, A.; Wen, R.; Kuimalee, S.; Kobayashi, S.; Park, H. One-step growth of needle and dendritic gold nanostructures on silicon for surface enhanced Raman scattering. CrystEngComm 2012, 14, 1241–1246. [Google Scholar] [CrossRef]
- Kawasaki, H.; Yao, T.; Suganuma, T.; Okumura, K.; Iwaki, Y.; Yonezawa, T.; Kikuchi, T.; Arakawa, R. Platinum Nanaflowers on Scratched Silicon by Galvanic Displacement for an Effective SALDI Substrate. Chem. Eur. J. 2010, 16, 10832–10843. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhong, H.; Zhu, Y.; Shen, J.; Li, C. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Trans. 2013, 42, 14324–14330. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, F.; Zhang, Q.; Zhan, Y.; Ma, D.; Xu, K.; Zhao, Y. 3D Silver Nanoparticles Decorated Zinc Oxide/Silicon Heterostructured Nanomace Arrays as High-Performance Surface-Enhanced Raman Scattering Substrates. ACS Appl. Mater. Interfaces 2015, 7, 5725–5735. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.; Wang, F.; Malac, M.; Li, P.; Wang, D.; Buriak, J. Preferential face deposition of gold nanoparticles on silicon nanowires by galvanic displacement. CrystEngComm 2012, 14, 5230–5234. [Google Scholar] [CrossRef]
- Wu, J.; Padalkar, S.; Xie, S.; Hemesath, E.R.; Cheng, J.; Liu, G.; Yan, A.; Connell, J.G.; Nakazawa, E.; Zhang, X.; et al. Electron tomography of Au-Catalyzed Semiconductor Nanowires. J. Phys. Chem. C Nanomater. Interfaces 2013, 117, 1059–1063. [Google Scholar] [CrossRef]
- Yae, S.; Nasu, N.; Matsumoto, K.; Hagihara, T.; Fukumuro, N.; Matsuda, H. Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions. Electrochim. Acta 2007, 53, 35–41. [Google Scholar] [CrossRef]
- Peng, K.; Zhu, J. Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim. Acta 2004, 49, 2563–2568. [Google Scholar] [CrossRef]
- Sayed, S.; Wang, F.; Mallac, M.; Meldrum, A.; Egerton, R.; Buriak, J. Heteroepitaxial Growth of Gold Nanostructures on Silicon by Galvanic Displacement. ACS Nano 2009, 3, 2809–2817. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.; Reitzle, A.; Kazimirov, A.; Ziegler, J.; Bunk, O.; Cao, L.; Renner, F.; Kolb, D.; Bedzyk, M.; Zegenhagen, J. A structure study of the electroless deposition of Au on Si, H. Surf. Sci. 2002, 496, 287–298. [Google Scholar] [CrossRef]
- Gutes, A.; Carraro, C.; Maboudian, R. Ultrasmooth Gold Thin Films by Self-Limiting Galvanic Displacement on Silicon. ACS Appl. Mater. Interfaces 2011, 3, 1581–1584. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, M.; Buriak, J. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template. J. Am. Chem. Soc. 2006, 128, 5877–5886. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, C.; Suni, I. Atomic force microscopy of Au deposition from aqueous HF onto Si(111). Surf. Sci. 1999, 430, L553–L557. [Google Scholar] [CrossRef]
- Hochbaum, A.; Chen, R.; Delgado, R.; Liang, W.; Garnett, E.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Gorostiza, P.; Allongue, P.; Diaz, R.; Morante, J.; Sanz, F. Electrochemical characterization of the open-circuit deposition of platinum on silicon from fluoride solutions. J. Phys. Chem. B 2003, 107, 6454–6461. [Google Scholar] [CrossRef]
- Cho, J.S.H.; Kang, H.K.; Wong, S.S.; Shachamdiamand, Y. Electroless Cu for VLSI. MRS Bull. 1993, 18, 31–38. [Google Scholar] [CrossRef]
- Darosa, C.; Iglesia, E.; Maboudian, R. Dynamics of copper deposition onto silicon by galvanic displacement. J. Electrochem. Soc. 2008, 155, D244–D250. [Google Scholar] [CrossRef]
- Zhang, Y.; Ang, S.; Tay, A.; Xu, D.; Kang, E.; Neoh, K.; Chong, L.; Huan, A. Characterization of electrolessly deposited copper and nickel nanofilms on modified Si(100) surface. Langmuir 2003, 19, 6802–6806. [Google Scholar] [CrossRef]
- Scheck, C.; Liu, Y.; Evans, P.; Schad, R.; Bowers, A.; Zangari, G.; Williams, J.; Issacs-Smith, T. Photoexcited electrodeposition of Cu structures on p-Si(001). J. Vac. Sci. Technol. A 2004, 22, 1842–1846. [Google Scholar] [CrossRef]
- Lim, S.; Mo, R.; Pianetta, P.; Chidsey, C. Effect of silicon surface termination on copper deposition in deionized water. J. Electrochem. Soc. 2001, 148, C16–C20. [Google Scholar] [CrossRef]
- Ye, S.; Ichihara, T.; Uosaki, K. Spectroscopic studies on electroless deposition of copper on a hydrogen-terminated Si(111) surface in fluoride solutions. J. Electrochem. Soc. 2001, 148, C421–C426. [Google Scholar] [CrossRef]
- Dhingra, S.; Sharma, R.; George, P. Selective deposition of a thin copper film for metallization on silicon by the chemical bath process. Solid State Electron. 1999, 43, 2231–2234. [Google Scholar] [CrossRef]
- Nagahara, L.A.; Ohmori, T.; Hashimoto, K.; Fujishima, A. The influence of hydrofluoric-acid concentration on electroless copper deposition onto silicon. J. Electroanal. Chem. 1992, 333, 363–369. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum Nanoparticle Ensemble-on-Graphene Hybrid. Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano 2010, 4, 3959–3968. [Google Scholar] [CrossRef] [PubMed]
- Gutes, A.; Laboriante, I.; Carraro, C.; Maboudian, R. Palladium nanostructures from galvanic displacement as hydrogen peroxide sensor. Sens. Actuators B Chem. 2010, 147, 681–686. [Google Scholar] [CrossRef]
- Fabre, B.; Li, G.; Gouttefangeas, F.; Joanny, L.; Loget, G. Tuning the Photoelectrocatalytic Hydrogen Evolution of Pt-Decorated Silicon Photocathodes by the Temperature and Time of Electroless Pt Deposition. Langmuir 2016, 32, 11728–11735. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, I.; Marchionna, S.; Zangari, G.; Pizzini, S. Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. Langmuir 2007, 23, 12413–12420. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Liu, J.; Liu, Q.; Zhou, F.; Liu, W. Surfactant-free and controllable synthesis of hierarchical platinum nanostructures and their comparative studies in electrocatalysis, surface-enhanced Raman scattering and surface wettability. Electrochim. Acta 2010, 55, 8649–8654. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, F.; Zhou, R.; Du, Y.; Yang, P.; Wang, C.; Xu, J. Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. Int. J. Hydrogen Energy 2011, 36, 15052–15059. [Google Scholar] [CrossRef]
- Bai, J.; Shen, L.; Sun, D.; Tang, Y.; Lu, T. Facile synthesis and electrocatalytic properties of dendritic palladium nanostructures. CrystEngComm 2014, 16, 10445–10450. [Google Scholar] [CrossRef]
- Kannan, P.; Dolinska, J.; Maiyalagan, T.; Opallo, M. Facile and rapid synthesis of Pd nanodendrites for electrocatalysis and surface-enhanced Raman scattering applications. Nanoscale 2014, 6, 11169–11176. [Google Scholar] [CrossRef] [PubMed]
- Cichoszewski, J.; Reuter, M.; Schwerdt, F.; Werner, J. Role of catalyst concentration on metal assisted chemical etching of silicon. Electrochim. Acta 2013, 109, 333–339. [Google Scholar] [CrossRef]
- Tian, Z.; Ren, B.; Wu, D. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463–9483. [Google Scholar] [CrossRef]
- Stiles, P.; Dieringer, J.; Shah, N.; Van Duyne, R. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, M.; Mahajan, S.; Bartlett, P.; Baumberg, J.; Russell, A. SERS at structured palladium and platinum surfaces. J. Am. Chem. Soc. 2007, 129, 7399–7406. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Ren, B.; Li, J.; Yang, Z. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 34, 3514–3534. [Google Scholar] [CrossRef]
- Cai, W.; Ren, B.; Li, X.; She, C.; Liu, F.; Cai, X.; Tian, Z. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: Dependence of surface roughening pretreatment. Surf. Sci. 1998, 406, 9–22. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Z.; Cui, L.; Ren, B.; Tian, Z. Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy: Methodology, mechanism, and application. J. Phys. Chem. C 2007, 111, 1770–1775. [Google Scholar] [CrossRef]
- Tian, Z.; Ren, B.; Mao, B. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J. Phys. Chem. B 1997, 101, 1338–1346. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y. Palladium crystals of various morphologies for SERS enhancement. CrystEngComm 2011, 13, 6481–6487. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Wu, X.; Shi, G. Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering. J. Phys. Chem. B 2006, 110, 24585–24592. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Zhou, Z.; Sun, S.; Cui, L.; Ren, B.; Tian, Z. Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity. Chem. Commun. 2006, 39, 4090–4092. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wei, G.; Ispas, A.; Hickey, S.; Eychmuller, A. Synthesis of Palladium Nanoparticles and Their Applications for Surface-Enhanced Raman Scattering and Electrocatalysis. J. Phys. Chem. C 2010, 114, 21976–21981. [Google Scholar] [CrossRef]
- Bisson, L.; Boissiere, C.; Nicole, L.; Grosso, D.; Jolivet, J.; Thomazeau, C.; Uzio, D.; Berhault, G.; Sanchez, C. Formation of Palladium Nanostructures in a Seed-Mediated Synthesis through an Oriented-Attachment-Directed Aggregation. Chem. Mater. 2009, 21, 2668–2678. [Google Scholar] [CrossRef]
- Gorostiza, P.; Diaz, R.; Servat, J.; Sanz, F.; Morante, J. Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. J. Electrochem. Soc. 1997, 144, 909–914. [Google Scholar] [CrossRef]
- Gorostiza, P.; Diaz, R.; Sanz, F.; Morante, J. Different behavior in the deposition of platinum from HF solutions on n- and p-type (100) Si substrates. J. Electrochem. Soc. 1997, 144, 4119–4122. [Google Scholar] [CrossRef]
- Chen, Y.; Yeh, C. Laser ablation method: Use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2002, 197, 133–139. [Google Scholar] [CrossRef]
- Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiong, Y.; Yin, Y.; Xia, Y. Pt nanoparticles surfactant-directed assembled into colloidal spheres and used as substrates in forming Pt nanorods and nanowires. Small 2006, 2, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Lin, M.; Chang, H. Facile Synthesis of Catalytically Active Platinum Nanosponges, Nanonetworks, and Nanodendrites. Chem. A Eur. J. 2009, 15, 4656–4662. [Google Scholar] [CrossRef] [PubMed]
- Al-Thabaiti, S.; Obaid, A.; Hussain, S.; Khan, Z. Shape-directing role of cetyltrimethylammonium bromide on the morphology of extracellular synthesis of silver nanoparticles. Arab. J. Chem. 2015, 8, 538–544. [Google Scholar] [CrossRef]
- McLellan, J.; Xiong, Y.; Hu, M.; Xia, Y. Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages. Chem. Phys. Lett. 2006, 417, 230–234. [Google Scholar] [CrossRef]
- Nguyen, V.; Nguyen, D.; Hayakawa, T.; Hirata, H.; Lakshminarayana, G.; Nogami, M. The synthesis and characterization of platinum nanoparticles: A method of controlling the size and morphology. Nanotechnology 2010, 21, 035605. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, S.H.; Xu, J.; Zhao, L.; Sun, H.C.; Li, J.; Mu, W.W.; Xu, L.; Chen, K.J. Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells. Opt. Express 2011, 19, A1051–A1056. [Google Scholar] [CrossRef] [PubMed]
- Aragay, G.; Pino, F.; Merkoci, A. Nanomaterials for Sensing and Destroying Pesticides. Chem. Rev. 2012, 112, 5317–5338. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, L.; Zhou, X. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 63–69. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Gao, Y.; Mahjouri-Samani, M.; Black, P.; Allen, J.; Mitchell, M.; Xiong, W.; Zhou, Y.; Jiang, L.; Lu, Y. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology 2012, 23. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance raman-spectroscopy of rhodamine-6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Gao, G.; Kong, Y.; Zhi, X.; Wang, K.; Zhang, X.; Cui, D. Biosynthesis of gold nanoparticles using chloroplasts. Int. J. Nanomed. 2011, 6, 2899–2906. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Hasegawa, K.; Hasegawa, Y.; Takahashi, N.; Kitahama, Y.; Fukuoka, S.; Murase, N.; Baba, Y.; Ozaki, Y.; Itoh, T. Direct conversion of silver complexes to nanoscale hexagonal columns on a copper alloy for plasmonic applications. Phys. Chem. Chem. Phys. 2013, 15, 14611–14615. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Dong, R.; Wu, Y.; Liu, H.; Kong, L.; Yang, L. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides. Talanta 2014, 127, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.; Henry, A.; Ringe, E.; Van Duyne, R. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Doering, W.; Nie, S. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 2002, 106, 311–317. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, Z.; Ren, B.; Wu, D. Surface-Enhanced Raman Scattering: Physics and Applications. In Topics in Applied Physics; Kneipp, K., Moskovits, M., Kneipp, H., Eds.; Springer: Berlin, Germany, 2006; Volume 103. [Google Scholar]
- Lin, X.; Cui, Y.; Xu, Y.; Ren, B.; Tian, Z. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Xu, H.; Kall, M. Nanogaps for SERS applications. MRS Bull. 2014, 39, 163–168. [Google Scholar] [CrossRef]
Raman (cm−1) | Assignment for R6G | References |
612 | In-plane bending of C–C–C ring | [67,68,69] |
774 | C–H out-of-plane bending | [67,68,69,70] |
1181 | In-plane xanthene ring deformation, C–H bending, N–H bending | [67,68,69,70] |
1315 | Aromatic C–C stretching | [67,68] |
1361, 1450 | Aromatic C–C stretching, in-plane C–H bending | [67,68,69,70] |
1506, 1532 | Aromatic C–C and C–N stretching, C–H and N–H bending | [67,68,70] |
1573, 1600 | Aromatic C–C stretching, in-plane N–H bending | [67,68,70] |
1650 | Aromatic C–C stretching, in-plane C–H bending | [67,68,69,70] |
Raman (cm−1) | Assignment for Paraoxon | |
1110 | C–H band (in plane)/NO2 asymmetric stretching | [66,71] |
1348 | Symmetry stretching NO2 | [66,71] |
1592 | Phenyl ring vibration | [66,71] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, M.; Whale, A.; Padalkar, S. Exploring the Efficacy of Platinum and Palladium Nanostructures for Organic Molecule Detection via Raman Spectroscopy. Sensors 2018, 18, 147. https://doi.org/10.3390/s18010147
Tran M, Whale A, Padalkar S. Exploring the Efficacy of Platinum and Palladium Nanostructures for Organic Molecule Detection via Raman Spectroscopy. Sensors. 2018; 18(1):147. https://doi.org/10.3390/s18010147
Chicago/Turabian StyleTran, Minh, Alison Whale, and Sonal Padalkar. 2018. "Exploring the Efficacy of Platinum and Palladium Nanostructures for Organic Molecule Detection via Raman Spectroscopy" Sensors 18, no. 1: 147. https://doi.org/10.3390/s18010147
APA StyleTran, M., Whale, A., & Padalkar, S. (2018). Exploring the Efficacy of Platinum and Palladium Nanostructures for Organic Molecule Detection via Raman Spectroscopy. Sensors, 18(1), 147. https://doi.org/10.3390/s18010147