Introduction to State Estimation of High-Rate System Dynamics
Abstract
:1. Introduction
- large uncertainties in the external loads;
- high levels of non-stationarities and heavy disturbances; and
- generated unmodeled dynamics from changes in system configuration.
2. Applications for High-Rate State Estimation
2.1. Civil Structures Exposed to Blast
2.2. Automotive Safety Systems against Collisions
2.3. Space Shuttle and Aerial Vehicles Prone to In-Flight Anomalies
3. Challenges in State Estimation for Systems Experiencing High-Rate Dynamics
3.1. High-Rate Systems-Specific Challenges
3.2. High-Rate Dynamic Example
4. Background on Observers and Their General Applicability
Observers for Nonlinear Systems
5. Adaptive Observers
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lowe, R.; Dodson, J.; Foley, J. Microsecond prognostics and health management. IEEE Reliab. Soc. Newsl. 2014, 60, 1–5. [Google Scholar]
- Connor, J.; Laflamme, S. Structural Motion Engineering; Springer: Berlin, Germany, 2014. [Google Scholar]
- Ekramian, M.; Sheikholeslam, F.; Hosseinnia, S.; Yazdanpanah, M. Adaptive state observer for lipschitz nonlinear systems. Syst. Control Lett. 2013, 62, 319–323. [Google Scholar] [CrossRef]
- Gelb, A. Dual contributions of optimal estimation theory in aerospace Applications. IEEE Control Syst. Mag. 1986, 6, 3–13. [Google Scholar] [CrossRef]
- Kalman, R. A new approach to linear filtering and prediction results. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Grewal, M.; Andrews, A. Applications of kalman filtering in aerospace 1960 to the present. J. Basic Eng. 2010, 3, 69–78. [Google Scholar]
- Guo, L.; Guo, Y.; Billings, S.; Coca, D. Approximate observability of infinite dimensional bilinear systems using a volterra series expansion. Syst. Control Lett. 2015, 75, 20–26. [Google Scholar] [CrossRef]
- Lin, L.H.; Hinman, E.; Stone, H.F.; Roberts, A.M. Survey of window retrofit solutions for blast mitigation. J. Perform. Constr. Facil. 2004, 18, 86–94. [Google Scholar] [CrossRef]
- Zhengqiang, Y.; Aiqun, L.; Youlin, X. Fluid viscous damper technology and its engineering application for structural vibration energy dissipation. J. Southeast Univ. (Nat. Sci. Ed.) 2002, 32, 466–473. [Google Scholar]
- Hinman, E. Blast Safety of the Building Envelope. Whole Building Design Guide, National Institute of Building Sciences. Available online: https://www.wbdg.org/resources/blast-safety-building-envelope (accessed on 12 January 2018).
- Wadley, H.N.; Dharmasena, K.P.; He, M.; McMeeking, R.M.; Evans, A.G.; Bui-Thanh, T.; Radovitzky, R. An active concept for limiting injuries caused by air blasts. Int. J. Impact Eng. 2010, 37, 317–323. [Google Scholar] [CrossRef]
- Fatal Motor Vehicle Accidents—National Summary. Transportation, 2012. Available online: http://www2.census.gov/library/publications/2011/compendia/statab/131ed/tables/12s1105.xls (accessed on 10 January 2018).
- Lee, S.J.; Jang, M.S.; Kim, Y.G.; Park, G.T. Stereovision-based real-time occupant classification system for advanced airbag systems. Int. J. Automot. Technol. 2011, 12, 425–432. [Google Scholar] [CrossRef]
- Meier, B. Study Shows Air Bags Save Lives, But Says Seat Belts Are Needed, Too. The New York Times. 26 June 1992. Available online: http://www.nytimes.com/1992/06/26/us/study-shows-air-bags-save-lives-but-says-seat-belts-are-needed-too.html?pagewanted=all (accessed on 12 January 2018).
- Cunningham, K.; Brown, T.; Gradwell, E.; Nee, P. Airbag associated fatal head injury: Case report and review of the literature on airbag injuries. J. Accid. Emerg. Med. 2000, 17, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Chiru, M. Injuries of the foot and ankle joint and their mechanisms. In Proceedings of the Fisita World Automotive Congress, Barcelona, Spain, 23–27 May 2004; pp. 1–13. [Google Scholar]
- Walker, J.D. From columbia to discovery: Understanding the impact threat to the space shuttle. Int. J. Impact Eng. 2009, 36, 303–317. [Google Scholar] [CrossRef]
- Smith, D. Megalightning and The Demise of STS-107 Space Shuttle Columbia: A Fresh Look at the Available Evidence. 2009. Available online: http://www.columbiadisaster.info (accessed on 10 January 2018).
- Kent, B.M. Return-to-Flight Electromagnetic Measurements—The NASA shuttle ascent debris radar system. In Proceedings of the IEEE 8th European Conference on Antennas and Propagation, The Hague, The Netherlands, 6–11 April 2014; pp. 1–3. [Google Scholar]
- Hyersonic. Available online: http://www.merriam-webster.com (accessed on 10 January 2018).
- Kolsky, H. An investigation of the mechanical properties of materials at very high rates of loading. Proce. Phys. Soc. Sect. B 1949, 62, 676. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, G.; Bhattacharyya, K. Robust unknown input observer for nonlinear systems and its application to fault detection and isolation. J. Dyn. Syst. Meas. Control 2008, 130, 1–5. [Google Scholar] [CrossRef]
- Fraguela, L.; Angulo, M.T.; Moreno, J.; Fridman, L. Design of a Prescribed Convergence Time Uniform Robust Exact Observer in the Presence of Measurement Noise. In Proceedings of the IEEE 51st Annual Conference on Decision and Control, Maui, HI, USA, 10–13 December 2012; pp. 6615–6620. [Google Scholar]
- Oliveira, R.M.F.; Ferreira, E.; Oliveira, F.; Azevedo, S. A Study on the convergence of observer-based kinetics estimators in stirred tank bioreactors. Korean Inst. Chem. Eng. 1994, 6, 367–371. [Google Scholar] [CrossRef]
- Kourehli, S.S.; Bagheri, A.; Amiri, G.G.; Ghafory-Ashtiany, M. Structural damage detection using incomplete modal data and incomplete static response. KSCE J. Civ. Eng. 2013, 17, 216–223. [Google Scholar] [CrossRef]
- Tao, G.L.; Deng, Z.l. Convergence of Self-Tuning Riccati Equation for Systems with Unknown Parameters and Noise Variances. In Proceedings of the IEEE 8th World Congress on Intelligent Control and Automation (WCICA), Jinan, China, 7–9 July 2010; pp. 5732–5736. [Google Scholar]
- Stricker, K.; Kocher, L.; Van Alstine, D.; Shaver, G.M. Input observer convergence and robustness: Application to compression ratio estimation. Control Eng. Pract. 2013, 21, 565–582. [Google Scholar] [CrossRef]
- Yamada, K.; Kobayashi, M. A Design Method for Unknown Input Observer for Non-Minimum Phase Systems. In Proceedings of the International Workshop and Conference on Photonics and Nanotechnology, International Society for Optics and Photonics, Gifu, Japan, 7 January 2007; pp. 1–6. [Google Scholar]
- Wang, Y.; Rajamani, R.; Bevly, D.M. Observer Design for Differentiable Lipschitz Nonlinear Systems with Time-Varying Parameters. In Proceedings of the IEEE 53rd Annual Conference on Decision and Control (CDC), Los Angeles, CA, USA, 15–17 December 2014; pp. 145–152. [Google Scholar]
- Kim, B.K.; Chung, W.K.; Ohba, K. Design and performance tuning of sliding-mode controller for high-speed and high-accuracy positioning systems in disturbance observer framework. IEEE Trans. Ind. Electron. 2009, 56, 3798–3809. [Google Scholar]
- Yoshioka, T.; Phuong, T.T.; Yabuki, A.; Ohishi, K.; Miyazaki, T.; Yokokura, Y. High-performance load torque compensation of industrial robot using kalman-filter-based instantaneous state observer. IEEE J. Ind. Appl. 2015, 4, 589–590. [Google Scholar] [CrossRef]
- Katsura, S.; Irie, K.; Ohishi, K. Wideband force control by position-acceleration integrated disturbance observer. IEEE Trans. on Ind. Electron. 2008, 55, 1699–1706. [Google Scholar] [CrossRef]
- Beliveau, A.; Hong, J.; Coker, J.; Glikin, N. COTS piezoresistive shock accelerometers performance evaluation. Shock Vib. Exch. 2012, 83. [Google Scholar]
- Shahnazi, R.; Zhao, Q.; Sari, A.H.A.; Jeinsch, T. Dynamic Nonlinear Unknown Input Observer for Fault Detection of Induction Motors. In Proceedings of the 23rd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 10–14 May 2015; pp. 823–828. [Google Scholar]
- Bodson, M.; Chiasson, J.; Novotnak, R.T. Nonlinear speed observer for high-Performance induction motor control. IEEE Trans. on Ind. Electron. 1995, 42, 337–343. [Google Scholar] [CrossRef]
- Xu, Z.; Rahman, F.; Xu, D. Comparative Study of an Adaptive Sliding Observer and an EKF for Speed Sensor-Less DTC IPM Synchronous Motor Drives. In Proceedings of the IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 2586–2592. [Google Scholar]
- Zhang, Y.; Zhao, Z.; Lu, T.; Yuan, L.; Xu, W.; Zhu, J. A Comparative Study of Luenberger Observer, Sliding Mode Observer and Extended Kalman Filter for Sensorless Vector Control of Induction Motor Drives. In Proceedings of the IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 2466–2473. [Google Scholar]
- Luenberger, D. An introduction to observers. IEEE Trans. Autom. Control 1971, 16, 596–602. [Google Scholar] [CrossRef]
- Wang, W.; Gao, Z. A Comparison Study of Advanced State Observer Design Techniques. In Proceedings of the IEEE American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 6, pp. 4754–4759. [Google Scholar]
- Kalman, R.E.; Bucy, R.S. New results in linear filtering and prediction theory. J. Fluids Eng. 1961, 83, 95–108. [Google Scholar] [CrossRef]
- Daum, F.E. Nonlinear filters: Beyond the kalman filter. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 57–69. [Google Scholar] [CrossRef]
- Drakunov, S.; Utkin, V. Sliding Mode Observers. Tutorial. In Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December 1995; Volume 4, pp. 3376–3378. [Google Scholar]
- Li, J.; Xu, L.; Zhang, Z. An adaptive sliding-mode observer for induction motor sensorless speed control. IEEE Trans.Ind. Appl. 2005, 41, 1039–1046. [Google Scholar] [CrossRef]
- Lascu, C.; Andreescu, G.D. Sliding-mode observer and improved integrator with DC-Offset compensation for flux estimation in sensorless-controlled induction motors. IEEE Trans. Ind. Electron. 2006, 53, 785–794. [Google Scholar] [CrossRef]
- Tursini, M.; Petrella, R.; Parasiliti, F. Adaptive sliding-mode observer for speed-sensorless control of induction motors. IEEE Trans. Ind. Appl. 2000, 36, 1380–1387. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Yongchang, Z.; Zhengming, Z.; Yingchao, Z.; Gaosheng, S. A Full Sliding Mode Sensorless Control of Three-Level Inverter-Fed Induction Motors. In Proceedings of the IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 2825–2831. [Google Scholar]
- Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. A Comparative Study of Observer Design Techniques for State of Charge Estimation in Electric Vehicles. In Proceedings of the 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 102–107. [Google Scholar]
- Li, P. State Feedback; University of Minnesota: Minneapolis, MN, USA, 2008; pp. 98–136. [Google Scholar]
- Xu, J.; Lum, K.Y.; Xie, L.; Loh, A.P. Fault detection and isolation of nonlinear systems: An unknown input observer approach with sum-of-squares techniques. J. Dyn. Syst. Meas. Control 2012, 134, 1–7. [Google Scholar] [CrossRef]
- Billings, S. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Zadeh, L.A. A Summary and Update of “Fuzzy Logic”. In Proceedings of the IEEE International Conference on Granular Computing (GrC), San Jose, CA, USA, 14–16 August 2010; pp. 42–44. [Google Scholar]
- Derrida, B. Introduction to neural network models. Nucl. Phys. B 1988, 4, 673–677. [Google Scholar] [CrossRef]
- Guyon, I. Neural networks and applications tutorial. Phys. Rep. 1991, 207, 215–259. [Google Scholar] [CrossRef]
- Geetha, M.; Jerome, J.; Kumar, P.A.; Anadhan, K. Comparative Performance Analysis of Extended Kalman Filter and Neural Observer for State Estimation of Continuous Stirred Tank Reactor. In Proceedings of the IEEE Fourth International Conference on Computing, Communications and Networking Technologies, Tiruchengode, India, 4–6 July 2013; pp. 1–7. [Google Scholar]
- Swerling, P. Modern state estimation methods from the viewpoint of the method of least squares. IEEE Trans. Autom. Control 1971, 16, 707–719. [Google Scholar] [CrossRef]
- Myung, I.J. Tutorial on maximum likelihood estimation. J. Mathe. Psychol. 2003, 47, 90–100. [Google Scholar] [CrossRef]
- Gordon, N.J.; Salmond, D.J.; Smith, A.F. Novel approach to nonlinear/non-gaussian bayesian state estimation. IEEE Proce. Radar Signal Process. 1993, 140, 107–113. [Google Scholar] [CrossRef]
- Ortega, R. An on-line least-squares parameter estimator with finite convergence time. Proc. IEEE 1988, 76, 847–848. [Google Scholar] [CrossRef]
- Frazho, A.E.; Sherman, P.J. On the Convergence of the Minimum Variance Spectral Estimator in Nonstationary Noise. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Toronto, ON, Canada, 14–17 April 1991; pp. 3141–3143. [Google Scholar]
- Bai, E.W.; Fu, M.; Tempo, R.; Ye, Y. Convergence results of the analytic center estimator. IEEE Trans. Autom. Control 2000, 45, 569–572. [Google Scholar] [CrossRef]
- Kamen, E. A recursive parameter estimator yielding exponential convergence under sufficient excitation. Syst. Signal Process. Circuits 1989, 8, 207–228. [Google Scholar] [CrossRef]
- Johnson, C.R. Lectures on Adaptive Parameter Estimation; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1988. [Google Scholar]
- Bitmead, R.R.; Anderson, B. Lyapunov techniques for the exponential stability of linear difference equations with random coefficients. IEEE Trans. Autom. Control 1980, 25, 782–787. [Google Scholar] [CrossRef]
- Song, Y.; Grizzle, J.W. The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems. In Proceedings of the IEEE American Control Conference, Chicago, IL, USA, 24–26 June 1992; pp. 3365–3369. [Google Scholar]
- Boutayeb, M.; Rafaralahy, H.; Darouach, M. Convergence analysis of the extended kalman filter used as an observer for nonlinear deterministic discrete-time systems. IEEE Trans. Autom. Control 1997, 42, 581–586. [Google Scholar] [CrossRef]
- Julier, S.; Uhlmann, J. New extension of the Kalman filter to nonlinear systems. Signal processing, sensor fusion, and target recognition VI. AeroSense ’97 1997, 3068, 182–193. [Google Scholar]
- Zhang, H.; Dai, G.; Sun, J.; Zhao, Y. Unscented kalman filter and its nonlinear application for tracking a moving target. Opt.-Int. J. Light Electron Opt. 2013, 124, 4468–4471. [Google Scholar] [CrossRef]
- Crassidis, J.L.; Markley, F.L. Unscented filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 2003, 26, 536–542. [Google Scholar] [CrossRef]
- Charles, A.; Nandhini, M.; Sakthivel, A. A comparative study of sliding mode observers. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 2923–2929. [Google Scholar]
- Khalil, H.K.; Praly, L. High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 2014, 24, 993–1015. [Google Scholar] [CrossRef]
- Braun, T.; Strausberger, F.; Reuter, J. State Estimation for Fast-Switching Solenoid Valves: A Study On Practical Nonlinear Observers and New Experimental Results. In Proceedings of the IEEE 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 24–27 August 2015; pp. 862–867. [Google Scholar]
- Mahapatro, K.A.; Chavan, A.D.; Suryawanshi, P.V.; Rane, M.E. Comparative Analysis of Linear and Non-linear Extended State Observer with Application to Motion Control. In Proceedings of the International Conference on Convergence of Technology, Pune, India, 6–8 April 2014; pp. 1–7. [Google Scholar]
- Zhou, T. On the convergence and stability of a robust state estimator. IEEE Trans. Autom. Control 2010, 55, 708–714. [Google Scholar] [CrossRef]
- Walcott, B.; Corless, M.; Żak, S. Comparative study of non-linear state-observation techniques. Int. J. Control 1987, 45, 2109–2132. [Google Scholar] [CrossRef]
- Ţiclea, A.; Besançon, G. Immersion-Based Observer Design. In Nonlinear Observers and Applications; Springer: Berlin, Germany, 2007; pp. 115–138. [Google Scholar]
- Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional fokker–planck equation. J. Comput. Appl. Math. 2004, 166, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Daum, F.E. New Exact Nonlinear Filters: Theory and applications. In Proceedings of the SPIE’s International Symposium on Optical Engineering and Photonics in Aerospace Sensing, Orlando, FL, USA, 6 July 1994; pp. 636–649. [Google Scholar]
- Bastin, G.; Gevers, M.R. Stable adaptive observers for nonlinear time-varying systems. IEEE Trans. Autom. Control 1988, 33, 650–658. [Google Scholar] [CrossRef]
- Marino, R. Adaptive observers for single output nonlinear systems. IEEE Trans. Autom. Control 1990, 35, 1054–1058. [Google Scholar] [CrossRef]
- Marino, R.; Tomei, P. Global adaptive observers for nonlinear systems via filtered transformations. IEEE Trans. Autom. Contro 1992, 37, 1239–1245. [Google Scholar] [CrossRef]
- Marino, R.; Tomei, P. Nonlinear Control Design: Geometric, Adaptive and Robust; Prentice Hall International (UK) Ltd.: London, UK, 1996. [Google Scholar]
- Samanta, R.; Das, G. A Comparative Study Between Luenberger Full Order Observer and Full Order Observer Designed by Generalized Matrix Inverse Method. In Proceedings of the IEEE First International Conference on Automation, Control, Energy and Systems (ACES), Hooghy, India, 1–2 Feburary 2014; pp. 1–5. [Google Scholar]
- Besançon, G. An Overview on Observer Tools for Nonlinear Systems. In Nonlinear Observers and Applications; Springer: Berlin, Germany, 2007; pp. 1–33. [Google Scholar]
- Zarei, J.; Shokri, E. Robust sensor fault detection based on nonlinear unknown input observer. Measurement 2014, 48, 355–367. [Google Scholar] [CrossRef]
- Yingjuan, Y.; Pengzhang, X. Design of a Nonlinear Adaptive Observer for a Class of Lipschitz Systems. In Proceedings of the IEEE 33rd Chinese Control Conference (CCC), Nanjing, China, 28–30 July 2014; pp. 2240–2243. [Google Scholar]
- Shahrokhi, M.; Morari, M. A discrete adaptive observer and identifier with arbitrarily fast rate of convergence. IEEE Trans. Autom. Control 1982, 27, 506–509. [Google Scholar] [CrossRef]
- Khayati, K.; Zhu, J. Adaptive Observer for a Large Class of Nonlinear Systems with Exponential Convergence of Parameter Estimation. In Proceedings of the IEEE International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, 6–8 May 2013; pp. 100–105. [Google Scholar]
- Boizot, N.; Busvelle, E. Adaptive-Gain Observers and Applications. In Nonlinear Observers and Applications; Springer: Berlin, Germany, 2007; pp. 71–114. [Google Scholar]
- Rajamani, R. Observers for lipschitz nonlinear systems. IEEE Trans. Autom. Control 1998, 43, 397–401. [Google Scholar] [CrossRef]
- Byrski, W.; Byrski, J. On-Line Fast Identification Method and Exact State Observer for Adaptive Control of Continuous System. In Proceedings of the IEEE 11th World Congress on Intelligent Control and Automation (WCICA), Shenyang, China, 29 June–4 July 2014; pp. 4491–4497. [Google Scholar]
- DeCruyenaere, J.; Hafez, H. A Comparison between Kalman Filters and Recurrent Neural Networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, Baltimore, MD, USA, 7–11 June 1992; Volume 4, pp. 247–251. [Google Scholar]
- Mosavi, M. Comparing DGPS corrections prediction using neural network, fuzzy neural network, and kalman filter. GPS Solut. 2006, 10. [Google Scholar] [CrossRef]
- Psichogios, D.C.; Ungar, L.H. A hybrid neural network-first principles approach to process modeling. AIChE J. 1992, 38, 1499–1511. [Google Scholar] [CrossRef]
- Hu, C.; Youn, B.; Chung, J. A multiscale framework with extended kalman filter for lithium-ion battery SOC and capacity estimation. Appl. Energy 2012, 92, 694–704. [Google Scholar] [CrossRef]
Observer Type | Application to High-Rate State Estimation | Reference |
---|---|---|
Luenberger Observer (LO) | Very fast convergence rates, but generally applies to linear systems with precise nominal models, thus inadequate for high-rate problem. | [39] |
Sliding Mode Observer (SMO) | High robustness and improved results for inaccurate models, but sensitive to choice of gain limiting the convergence rate. | [43,44,45,46,47,48] |
Extended Kalman Filter (EKF) | High accuracy for nonlinear systems with added noise, but complex implementation leading to poor convergence rates. | [37,41] |
Unscented Kalman Filter (UKF) | Better convergence rates and higher accuracy than the EKF for it uses true nonlinear model, avoids complex Jacobian and Hessian matrices, and is easier to implement. | [68] |
High-Gain Observer (HGO) | Accurate and fast convergence rates for estimating slowly varying states or inputs making it inadequate for high-rate problems. | [27,71] |
Nonlinear Extended State Observer (NESO) | Offers robustness to system uncertainty and external disturbances. Outperformed both HGO and SMO in a comparative study. | [39,73] |
Robust State Estimator (RSE) | Guarantees robustness for time invariant systems, constant filter design parameters, and stationary external inputs, however the convergence rate is similar to Kalman Filters. | [74] |
Addressed Challenge | Solution | Reference |
---|---|---|
Sensitivity to noise | HG-EKF | [89] |
Sensitivity to large perturbations | AG-EKF | |
Arbitrary fast convergence | Using multiple output errors | [87] |
Adaptation laws | Exponential parameter estimation | [88] |
Broad applicability | Generalized Lipschitz condition | [3] |
Fast identification of step changes | MFM | [91] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Laflamme, S.; Dodson, J.; Joyce, B. Introduction to State Estimation of High-Rate System Dynamics. Sensors 2018, 18, 217. https://doi.org/10.3390/s18010217
Hong J, Laflamme S, Dodson J, Joyce B. Introduction to State Estimation of High-Rate System Dynamics. Sensors. 2018; 18(1):217. https://doi.org/10.3390/s18010217
Chicago/Turabian StyleHong, Jonathan, Simon Laflamme, Jacob Dodson, and Bryan Joyce. 2018. "Introduction to State Estimation of High-Rate System Dynamics" Sensors 18, no. 1: 217. https://doi.org/10.3390/s18010217
APA StyleHong, J., Laflamme, S., Dodson, J., & Joyce, B. (2018). Introduction to State Estimation of High-Rate System Dynamics. Sensors, 18(1), 217. https://doi.org/10.3390/s18010217