Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications
Abstract
:1. Introduction
2. CFBG Working Principle
3. Inscription of CFBG Sensors
3.1. Phase Mask Inscription
3.2. CFBG on PMMA Fibers
3.3. Wideband CFBG
3.4. Draw-Tower CFBG
3.5. Tunable Phase Mask CFBG
3.6. Regenerated CFBG
3.7. CFBG in Microfiber
4. CFBG Interrogation
4.1. CFBG Interrogation
4.2. CFBG Parameters Estimation
4.3. CFBG Spectral Reconstruction
- Initialize a CFBG model based on CMT [7]. The parameters input to the model are: L, Lg, δneff, neff, kLg, λB(0). The parameters can be obtained from the CFBG manufacturer, or estimated as in [72]. The simulated spectrum of the CFBG is labeled as RSIM(λi), i = 1, 2, …, N. The wavelength grid λi is defined by the detector.
- Calibrate the CFBG using a thermal bath, obtaining the temperature sensitivity sT.
- Measure the CFBG in reference condition, obtaining the spectrum RMEAS(λi).
- Obtain a digital equalization filter H(λi) such that RSIM(λi) × H(λi) = RMEAS(λi) in reference condition.
- For each measured spectrum:
- Generate a temperature pattern using Equation (8).
- Apply the temperature pattern to the CMT model, obtaining a new RSIM(λi).
- Equalize the simulated spectrum using the previous function H.
- Calculate the cost function CF, as the root mean square error (RMSE) between the equalized simulated spectrum and the measured spectrum.
- Repeat this cycle, varying the parameters in Equation (8), until the CF is minimized.
- The set of parameters that minimizes the CF is considered to be the best estimation of the temperature profile.
5. Applications of CFBG Sensors
5.1. Monitoring of Minimally Invasive Thermo-Therapies
5.2. Localization of Spot-Size Heat Source
5.3. Structural Health Monitoring
5.4. Monitoring of CFRP Damages
5.5. Measurement of Shock Wave and Detonation
5.6. Monitoring of Power Transmission Lines
5.7. Precision Detection of Liquid Containers Level and Inclination
5.8. Localization and Estimation of High-Pressure events
5.9. Distributed Measurements
5.10. Hybrid Sensors
6. Conclusions
Funding
Conflicts of Interest
References
- Udd, E.; Spillman, W.B. Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355–375. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Lightwave Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Kinet, D.; Megret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef] [PubMed]
- Othonos, A.; Kalli, K. Fiber Bragg Gratings: Fundamentals and Applications; Artech House: Boston, MA, USA, 1999. [Google Scholar]
- Erdogan, T. Fiber grating spectra. J. Lightwave Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef]
- Skaar, J.; Wang, L.; Erdogan, T. On the synthesis of fiber Bragg gratings by layer peeling. J. Lightwave Technol. 2001, 37, 165–173. [Google Scholar] [CrossRef]
- Mihailov, S.J. Fiber Bragg grating sensors for harsh environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D.; Macchi, E.G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Leen, G.; Lewis, E. Monitoring of radiofrequency thermal ablation in liver tissue through fibre Bragg grating sensors array. Electron. Lett. 2014, 50, 981–983. [Google Scholar] [CrossRef]
- Arkwright, J.W.; Blenman, N.G.; Underhill, I.D.; Maunder, S.A.; Spencer, N.J.; Costa, M.; Brookes, S.J.; Szczesniak, M.M.; Dinning, P.G. Measurement of muscular activity associated with peristalsis in the human gut using fiber Bragg grating arrays. IEEE Sens. J. 2012, 12, 113–117. [Google Scholar] [CrossRef]
- Lamberti, A.; Chiesura, G.; Luyckx, G.; Degrieck, J.; Kaufmann, M.; Vanlanduit, S. Dynamic strain measurements on automotive and aeronautic composite components by means of embedded fiber Bragg grating sensors. Sensors 2015, 15, 27174–271200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, L.; Sun, C.; Yu, Q. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement. IEEE Sens. J. 2008, 8, 1879–1883. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, Y.; Lai, S. Simultaneous measurement of down-hole high pressure and temperature with a bulk-modulus and FBG sensor. IEEE Photonics Technol. Lett. 2002, 14, 1584–1586. [Google Scholar] [CrossRef]
- Fernandez, A.F.; Gusarov, A.I.; Bodart, S.; Lammens, K.; Berghmans, F.; Decre, M.; Me, P.; Blondel, M.; Delchambre, A. Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors. Opt. Eng. 2002, 41, 1246–1254. [Google Scholar]
- Zhang, B.; Kahrizi, M. High-temperature resistance fiber Bragg grating temperature sensor fabrication. IEEE Sens. J. 2007, 7, 586–591. [Google Scholar] [CrossRef]
- Lindner, E.; Hartung, A.; Hoh, D.; Chojetzki, C.; Schuster, K.; Bierlich, J.; Rothhardt, M. Trends and Future of Fiber Bragg Grating Sensing Technologies: Tailored Draw Tower Gratings (DTGs). In Proceedings of the SPIE Photonics Europe, Brussels, Belgium, 14–17 April 2014. [Google Scholar]
- Tosi, D. Review and analysis of peak tracking techniques for fiber Bragg grating sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef] [PubMed]
- Dziuda, L.; Skibniewski, F.W.; Krej, M.; Lewandowski, J. Monitoring respiration and cardiac activity using fiber Bragg grating-based sensors. IEEE Trans. Biomed. Eng. 2012, 59, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Higuera, J.M.; Rodriguez Cobo, L.; Quintela Incera, A.; Cobo, A. Fiber optic sensors in structural health monitoring. J. Lightwave Technol. 2011, 29, 587–608. [Google Scholar] [CrossRef]
- Ali, T.A.; Shehata, M.I.; Mohamed, N.A. Design and performance investigation of a highly accurate apodized fiber Bragg grating-based strain sensor in single and quasi-distributed systems. Appl. Opt. 2015, 54, 5243–5251. [Google Scholar] [CrossRef] [PubMed]
- Mi, Q.; Zhu, H.; Gao, X.; Li, J. An apodized optimization methods for phase shift sampled fiber Bragg grating. Optik 2015, 126, 432–435. [Google Scholar] [CrossRef]
- Gu, B.; Qi, W.; Zheng, J.; Zhou, Y.; Shum, P.P.; Luan, F. Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber. Opt. Lett. 2014, 39, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Chiavaioli, F.; Gouveia, C.A.; Jorge, P.A.; Baldini, F. Towards a uniform metrological assessment of grating-based optical fiber sensors: From refractometers to biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Iadicicco, A.; Cusano, A.; Campopiano, S.; Cutolo, A.; Giordano, M. Thinned fiber Bragg gratings as refractive index sensors. IEEE Sens. J. 2005, 5, 1288–1295. [Google Scholar] [CrossRef]
- Chah, K.; Kinet, D.; Wuilpart, M.; Megret, P.; Caucheteur, C. Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber. Opt. Lett. 2013, 38, 594–596. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Komukai, T.; Nakazawa, M. Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient. IEEE Photonics Technol. Lett. 1998, 10, 845–847. [Google Scholar] [CrossRef]
- Hill, K.O.; Bilodeau, F.; Malo, B.; Kitagawa, T.; Theriault, S.; Johnson, D.C.; Albert, J.; Takiguchi, K. Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion. Opt. Lett. 1994, 19, 1314–1316. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.M.; Chai, J.X.; Grubsky, V.; Starodubov, D.S.; Hayee, M.I.; Lee, S.; Jiang, X.; Willner, A.E.; Feinberg, J. Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating. IEEE Photonics Technol. Lett. 1999, 11, 373–375. [Google Scholar] [CrossRef]
- Lee, S.; Khosravani, R.; Peng, J.; Grubsky, V.; Starodubov, D.S.; Willner, A.E.; Feinberg, J. Adjustable compensation of polarization mode dispersion using a high-birefringence nonlinearly chirped fiber Bragg grating. IEEE Photonics Technol. Lett. 1999, 11, 1277–1279. [Google Scholar] [CrossRef]
- Cai, J.X.; Feng, K.M.; Willner, A.E.; Grubsky, V.; Starodubov, D.S.; Feinberg, J. Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating. IEEE Photonics Technol. Lett. 1999, 11, 1455–1457. [Google Scholar] [CrossRef]
- Davis, A.O.; Saulnier, P.M.; Karpiński, M.; Smith, B.J. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings. Opt. Express 2017, 25, 12804–12811. [Google Scholar] [CrossRef] [PubMed]
- Markowski, K.; Jędrzejewski, K.; Marzęcki, M.; Osuch, T. Linearly chirped tapered fiber-Bragg-grating-based Fabry–Perot cavity and its application in simultaneous strain and temperature measurement. Opt. Lett. 2017, 42, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Lang, H.; Liu, T.; Xia, D. Detonation Velocity Measurement with Chirped Fiber Bragg Grating. Sensors 2017, 17, 2552. [Google Scholar]
- Korganbayev, S.; Orazayev, Y.; Sovetov, S.; Bazyl, A.; Schena, E.; Massaroni, C.; Gassino, R.; Vallan, A.; Perrone, G.; Saccomandi, P.; Caponero, M.A.; et al. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario. Opt. Fiber Technol. 2018, 41, 48–55. [Google Scholar] [CrossRef]
- Palumbo, G.; Tosi, D.; Iadicicco, A.; Campopiano, S. Analysis and design of Chirped fiber Bragg grating for temperature sensing for possible biomedical applications. IEEE Photonics J. 2018, 10. [Google Scholar] [CrossRef]
- Min, R.; Ortega, B.; Marques, C. Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Opt. Express 2018, 26, 4411–4420. [Google Scholar] [CrossRef] [PubMed]
- Saccomandi, P.; Varalda, A.; Gassino, R.; Tosi, D.; Massaroni, C.; Caponero, M.A.; Pop, R.; Korganbayev, S.; Perrone, G.; Diana, M.; et al. Linearly chirped fiber Bragg grating response to thermal gradient: From bench tests to the real-time assessment during in vivo laser ablations of biological tissue. J. Biomed. Opt. 2017, 22, 097002. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.A.; Pereira, L.; Antunes, P.; Mergo, P.; Webb, D.J.; Pinto, J.L.; André, P. Chirped polymer optical fiber Bragg grating sensors. In Micro-Structured and Specialty Optical Fibres V; SPIE: Prague, Czech Republic, 2017. [Google Scholar]
- Nand, A.; Kitcher, D.J.; Wade, S.A.; Nguyen, T.B.; Baxter, G.W.; Jones, R.; Collins, S.F. Determination of the position of a localized heat source within a chirped fibre Bragg grating using a Fourier transform technique. Meas. Sci. Technol. 2006, 17, 1436–1445. [Google Scholar] [CrossRef]
- Yashiro, S.; Okabe, T.; Toyama, N.; Takeda, N. Monitoring damage in holed CFRP laminates using embedded chirped FBG sensors. Int. J. Solids Struct. 2007, 44, 603–613. [Google Scholar] [CrossRef]
- Froggatt, M. Distributed measurement of the complex modulation of a photo-induced Bragg grating in an optical fiber. Appl. Opt. 1996, 35, 5162. [Google Scholar] [CrossRef] [PubMed]
- Froggatt, M.; Moore, J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl. Opt. 1998, 37, 1735. [Google Scholar] [CrossRef] [PubMed]
- Hervás, J.; Tosi, D.; García-Miquel, H.; Barrera, D.; Fernández-Pousa, C.R.; Sales, S. KLT based interrogation technique for FBG multiplexed sensor tracking. J. Lightwave Technol. 2017, 35, 3387–3392. [Google Scholar] [CrossRef]
- Tosi, D.; Schena, E.; Molardi, C.; Korganbayev, S. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Opt. Fiber Technol. 2018, 43, 6–19. [Google Scholar] [CrossRef]
- Korganbayev, S.; Orazayev, Y.; Sovetov, S.; Bazyl, A.; Tosi, D.; Schena, E.; Massaroni, C.; Gassino, R.; Vallan, A.; Perrone, G. Thermal gradient estimation with fiber-optic chirped FBG sensors: Experiments in biomedical applications. In Proceedings of the IEEE Sensors Conference, Glasgow, UK, 29 October–1 November 2017. [Google Scholar]
- Korganbayev, S.; Zhakin, N.; Tosi, D.; Napoleoni, F.; Schena, E.; Saccomandi, P.; Gassino, R.; Vallan, A.; Perrone, G.; Caponero, M.A. Linearly Chirped Fiber-Optic Bragg Grating as Distributed Temperature Sensor for Laser Ablation. In Proceedings of the IEEE Sensors Conference, Orlando, FL, USA, 30 October–2 November 2016. [Google Scholar]
- Varalda, A.P.D.; Schena, E.; Massaroni, C.; Caponero, M.A.; Polimadei, A.; Tosi, D.; Saccomandi, P. Assessment of a Linearly Chirped Fiber Bragg Grating Sensor under Linear and non-Linear Temperature Gradient. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017. [Google Scholar]
- Tosi, D.; Korganbayev, S.; Zhakin, N.; Gassino, R.; Perrone, G.; Vallan, A. Towards inline spatially resolved temperature sensing in thermal ablation with chirped fiber Bragg grating. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016. [Google Scholar]
- Bayspec FBGA. Available online: http://www.bayspec.com/telecom-fiber-sensing/fbga-systems/ (accessed on 8 May 2018).
- FBGS International. FBGG-Scan Interrogators. Available online: http://www.fbgs.com/products/ measurement-devices/fbg-scan-704d/804d/ (accessed on 8 May 2018).
- Ibsen Photonics. Interrogation Monitors. Available online: http://www.ibsenphotonics.com (accessed on 8 May 2018).
- Chang, H.Y.; Chang, Y.C.; Liu, W.F. A highly sensitive two-dimensional inclinometer based on two etched chirped-fiber-grating arrays. Sensors 2017, 15, 2922. [Google Scholar] [CrossRef] [PubMed]
- Micron Optics. Interrogators. Available online: http://www.micronoptics.com (accessed on 8 May 2018).
- Skaar, J.; Wang, L.; Erdogan, T. Synthesis of thick optical thin-film filters with a layer-peeling inverse-scattering algorithm. Appl. Opt. 2001, 40, 2183–2189. [Google Scholar] [CrossRef] [PubMed]
- Morey, W.W.; Ball, G.A.; Meltz, G. Photoinduced Bragg gratings in optical fibers. Opt. Photonics News 1994, 5, 8–14. [Google Scholar] [CrossRef]
- Bettini, P.; Guerreschi, E.; Sala, G. Development and experimental validation of a numerical tool for structural health and usage monitoring systems based on chirped grating sensors. Sensors 2015, 15, 1321–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, C.A.; Antunes, P.; Mergo, P.; Webb, D.J.; André, P. Chirped Bragg gratings in PMMA step-index polymer optical fiber. IEEE Photonics Technol. Lett. 2017, 29, 500–503. [Google Scholar] [CrossRef]
- Idrisov, R.F.; Varzhel, S.V.; Kulikov, A.V.; Meshkovskiy, I.K.; Rothhardt, M.; Becker, M.; Schuster, K.; Bartelt, H. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings. Opt. Laser Technol. 2016, 80, 112–115. [Google Scholar] [CrossRef]
- Xiao, P.; Feng, F.R.; Liu, T.; Ran, Y.; Jin, L.; Guan, B.O. Chirped Bragg grating inscribed in microfiber. In Proceedings of the Asia-Pacific Optical Sensors Conference, Shanghai, China, 11–14 October 2016. [Google Scholar]
- Bernier, M.; Sheng, Y.; Vallée, R. Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses. Opt. Express 2009, 17, 3285–3290. [Google Scholar] [CrossRef] [PubMed]
- Voigtländer, C.; Thomas, J.; Wikszak, E.; Dannberg, P.; Nolte, S.; Tünnermann, A. Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask. Opt. Lett. 2009, 34, 1888–1890. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Wang, Y.; Yang, H.; Guo, T.; Rong, Q.; Li, L.; Su, D.; Lim, K.S.; Ahmad, H. Ultrahigh-temperature chirped fiber Bragg grating through thermal activation. IEEE Photonics Technol. Lett. 2015, 27, 1305–1308. [Google Scholar] [CrossRef]
- Tosi, D.; Olivero, M.; Perrone, G. Low-cost fiber Bragg grating vibroacoustic sensor for voice and heartbeat detection. Appl. Opt. 2008, 47, 5123–5129. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R. Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks. Electron. Lett. 1998, 34, 2025–2027. [Google Scholar] [CrossRef]
- Becker, M.; Elsmann, T.; Latka, I.; Rothhardt, M.; Bartelt, H. Chirped phase mask interferometer for fiber Bragg grating array inscription. J. Lightwave Technol. 2015, 33, 2093–2098. [Google Scholar] [CrossRef]
- Technica, S.A. Fiber Bragg Gratings. Available online: https://technicasa.com (accessed on 8 May 2018).
- Northlab Photonics, NORIA. Available online: http://www.northlabphotonics.com/news/fbg-manufacturing-solution-the-noria/ (accessed on 8 May 2018).
- Lemaire, P.J.; Atkins, R.M.; Mizrahi, V.; Reed, W.A. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres. Electron. Lett. 1993, 29, 1191–1193. [Google Scholar] [CrossRef]
- Marques, C.A.; Leal-Junior, A.G.; Min, R.; Domingues, M.; Leitão, C.; Antunes, P.; Ortega, B.; André, P. Advances on Polymer Optical Fiber Gratings Using a KrF Pulsed Laser System Operating at 248 nm. Fibers 2018, 6, 13. [Google Scholar] [CrossRef]
- Exalos, SLED. Available online: http://www.exalos.com/ (accessed on 8 May 2018).
- Lhommé, F.; Caucheteur, C.; Chah, K.; Blondel, M.; Mégret, P. Synthesis of fiber Bragg grating parameters from experimental reflectivity: A simplex approach and its application to the determination of temperature-dependent properties. Appl. Opt. 2005, 44, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.P. Monte Carlo Methods; John Wiley & Sons, Ltd.: New York, NY, USA, 2004. [Google Scholar]
- Tosi, D.; Macchi, E.G.; Gallati, M.; Braschi, G.; Cigada, A.; Rossi, S.; Leen, G.; Lewis, E. Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver. Biomed. Opt. Express 2014, 5, 1799–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yandy, A.M.; Cruz, J.; Russo, N.A.; Duchowicz, R.; Andrés, M.V. Determination of the position of defects generated within a chirped fiber Bragg grating by analyzing its reflection spectrum and group delay. In Proceedings of the Latin America Optics and Photonics Conference LTu4A-36, Medellin, Colombia, 22–26 August 2016. [Google Scholar]
- Takeda, S.; Okabe, Y.; Takeda, N. Monitoring of delamination growth in CFRP laminates using chirped FBG sensors. J. Intell. Mater. Syst. Struct. 2008, 19, 437–444. [Google Scholar] [CrossRef]
- Rodriguez, G.; Gilbertson, S.M. Ultrafast fiber Bragg grating interrogation for sensing in detonation and shock wave experiments. Sensors 2017, 17, 248. [Google Scholar] [CrossRef] [PubMed]
- Wydra, M.; Kisala, P.; Harasim, D.; Kacejko, P. Overhead transmission line sag estimation using a simple optomechanical system with chirped fiber Bragg gratings. Part 1: Preliminary measurements. Sensors 2018, 18, 309. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Liu, C.C.; Chang, Y.C.; Liu, W.F. A high-sensitivity two-dimensional inclinometer based on two-array-etched-chirped fiber gratings. In Proceedings of the 2016 Conference on Lasers and Electro-Optics: QELS Fundamental Science, San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Chang, H.Y.; Chang, Y.C.; Sheng, H.J.; Fu, M.Y.; Liu, W.F.; Kashyap, R. An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating. IEEE Photonics Technol. Lett. 2016, 28, 268–271. [Google Scholar] [CrossRef]
- Osuch, T.; Markowski, K.; Manujło, A.; Jędrzejewski, K. Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration. Sens. Actuator A Phys. 2016, 252, 76–81. [Google Scholar] [CrossRef]
- Swart, P.L.; Lacquet, B.M.; Chtcherbakov, A.A. Chirped fiber Bragg grating sensor for pressure and position sensing. Opt. Eng. 2005, 44, 054402. [Google Scholar]
- Wang, Y.; Zhang, J.; Coutinho, O.; Yao, J. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform. Opt. Lett. 2015, 40, 4923–4926. [Google Scholar] [CrossRef] [PubMed]
- Osuch, T.; Markowski, K.; Jędrzejewski, K. Fiber-optic strain sensors based on linearly chirped tapered fiber Bragg gratings with tailored intrinsic chirp. IEEE Sens. J. 2016, 16, 7508–7514. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Yao, J. Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol. Lett. 2011, 23, 1340–1342. [Google Scholar] [CrossRef]
- Sun, A.; Wu, Z. A hybrid LPG/CFBG for highly sensitive refractive index measurements. Sensors 2012, 12, 7318–7325. [Google Scholar] [CrossRef] [PubMed]
- Duraibabu, D.; Poeggel, S.; Lehzen, K.; Dooly, G.; Lewis, E.; Leen, G.; Newe, T. An optical fibre sensor for combined point pressure measurement and spatially resolved temperature measurement. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September–2 October 2015. [Google Scholar]
- Schena, E.; Tosi, D.; Saccomandi, P.; Lewis, E.; Kim, T. Fiber optic sensors for temperature monitoring during thermal treatments: An overview. Sensors 2016, 16, 1144. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D.; Macchi, E.G.; Cigada, A. Fiber-optic temperature and pressure sensors applied to radiofrequency thermal ablation in liver phantom: Methodology and experimental measurements. J. Sens. 2015, 2015, 909012. [Google Scholar] [CrossRef]
- Goldberg, S.N.; Gazelle, G.S.; Mueller, P.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am. J. Roentgenol. 2000, 174, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 2005, 5, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Sapareto, S.A.; Dewey, W.C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef]
- Ahmed, M.; Brace, C.L.; Lee, F.T.; Goldberg, S.N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351–369. [Google Scholar] [CrossRef] [PubMed]
- AngioDynamics Starburst Semiflex. Available online: http://www.angiodynamics.com/products/starburst-semiflex (accessed on 8 May 2018).
- Pai, M.; Spalding, D.; Jiao, L.; Habib, N. Use of bipolar radiofrequency in parenchymal transection of the liver, pancreas and kidney. Dig. Surg. 2012, 29, 43–47. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993. Biological Evaluation of Medical Devices; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Reid, A.D.; Gertner, M.R.; Sherar, M.D. Temperature measurement artefacts of thermocouples and fluoroptic probes during laser irradiation at 810 nm. Phys. Med. Biol. 2001, 46, N149–N157. [Google Scholar] [CrossRef] [PubMed]
- Grattan, K.T.V.; Zhang, Z.Y. Fiber Optic Fluorescence Thermometry; Springer Science & Business Media: Berlin, Germany, 1995. [Google Scholar]
- Macchi, E.G.; Tosi, D.; Braschi, G.; Gallati, M.; Cigada, A.; Busca, G.; Lewis, E. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution. J. Biomed. Opt. 2014, 19, 117004. [Google Scholar] [CrossRef] [PubMed]
- Ayav, A.; Jiao, L.; Dickinson, R.; Nicholls, J.; Milicevic, M.; Pellicci, R.; Bachellier, P.; Habib, N. Liver resection with a new multiprobe bipolar radiofrequency device. Arch. Surg. 2008, 143, 396–401. [Google Scholar] [CrossRef] [PubMed]
- AngioDynamics Habib 4× Laparoscopic Bipolar Resection Device. Available online: http://www.angiodynamics.com/products/habib-4x-laparoscopic (accessed on 8 May 2018).
- Nand, A.; Kitcher, D.J.; Wade, S.A.; Collins, S.F.; Baxter, G.W. Determination of the Position of a Localised Heat Source within a Chirped fiber Bragg Grating. In Proceedings of the Topical Meeting on Bragg Gratings, Poling & Photosensitivity (BGPP), Sydney, Australia, 4–9 July 2005; pp. 448–450. [Google Scholar]
- Ciminello, M.; Bettini, P.; Ameduri, S.; Concilio, A. Circular patch sensor based on distributed fiber optic technology for tensile and bending loads identification. IEEE Sens. J. 2017, 17, 5908–5914. [Google Scholar] [CrossRef]
- Descamps, F.; Bette, S.; Kinet, D.; Caucheteur, C. Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating. Appl. Opt. 2016, 55, 4270–4276. [Google Scholar] [CrossRef] [PubMed]
- Cazzulani, G.; Cinquemani, S.; Comolli, L.; Gardella, A.; Resta, F. Vibration control of smart structures using an array of Fiber Bragg Grating sensors. Mechatronics 2014, 24, 345–353. [Google Scholar] [CrossRef]
- Zhou, G.; Sim, L.M. Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review. Smart Mater. Struct. 2002, 11, 925–939. [Google Scholar] [CrossRef]
- Yashiro, S.; Takeda, N.; Okabe, T.; Sekine, H. A new approach to predicting multiple damage states in composite laminates with embedded FBG sensors. Compos. Sci. Technol. 2005, 65, 659–667. [Google Scholar] [CrossRef]
- Okabe, Y.; Tsuji, R.; Takeda, N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites. Compos. A Appl. Sci. Manuf. 2004, 35, 59–65. [Google Scholar] [CrossRef]
- Goossens, S.; Geernaert, T.; De Pauw, B.; Lamberti, A.; Vanlanduit, S.; Luyckx, G.; Chiesura, G.; Thienpont, H.; Berghmans, F. Dynamic 3D strain measurements with embedded micro-structured optical fiber Bragg grating sensors during impact on a CFRP coupon. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Gilbertson, S.; Jackson, S.I.; Vincent, S.W.; Rodriguez, G. Detection of high explosive detonation across material interfaces with chirped fiber Bragg gratings. Appl. Opt. 2015, 54, 3849–3854. [Google Scholar] [CrossRef]
- Barbarin, Y.; Lefrancois, A.; Zaniolo, G.; Chuzeville, V.; Jacquet, L.; Magne, S.; Luc, J.; Osmont, A. Optimization of detonation velocity measurements using a chirped fiber Bragg grating. Proc. SPIE 2015, 9480, 94800S. [Google Scholar]
- Rodriguez, G.; Sandberg, R.L.; McCulloch, Q.; Jackson, S.I.; Vincent, S.W.; Udd, E. Chirped fiber Bragg grating detonation velocity sensing. Rev. Sci. Instrum. 2013, 84, 015003. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.; Sandberg, R.L.; Jackson, S.I.; Vincent, S.W.; Gilbertson, S.M.; Udd, E. Fiber Bragg sensing of high explosive detonation experiments at Los Alamos National Laboratory. J. Phys. Conf. Ser. 2014, 500, 142030. [Google Scholar] [CrossRef] [Green Version]
- Malhara, S.; Vittal, V. Mechanical state estimation of overhead transmission lines using tilt sensors. IEEE Trans. Power Syst. 2010, 25, 1282–1290. [Google Scholar] [CrossRef]
- Seppa, T.O. Accurate ampacity determination: Temperature-sag model for operational real time ratings. IEEE Trans. Power Deliv. 1995, 10, 1460–1470. [Google Scholar] [CrossRef]
- Rosolem, J. Smart fiber optic sensors for applications in electrical power systems. In Frontiers Science Technology; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; pp. 97–109. [Google Scholar]
- Ma, G.M.; Li, Y.B.; Mao, N.Q.; Shi, C.; Li, C.R.; Zhang, B. A fiber Bragg grating-based dynamic tension detection system for overhead transmission line galloping. Sensors 2018, 18, 365. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.H.; Guang, Q.X.; Rajibul, I.M.; Kok-Sing, L.; Ahmad, H. Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG. Sens. Actuator B Chem. 2014, 202, 959–963. [Google Scholar] [CrossRef]
- Du, Y.; Jothibasu, S.; Zhuang, Y.; Zhu, C.; Huang, J. Rayleigh backscattering based macrobending single mode fiber for distributed refractive index sensing. Sens. Actuator B Chem. 2017, 248, 346–350. [Google Scholar] [CrossRef]
- Markowski, K.; Jedrzejewski, K.; Osuch, T. Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings. Appl. Opt. 2016, 55, 4505–4513. [Google Scholar] [CrossRef] [PubMed]
- Osuch, T. Tapered and linearly chirped fiber Bragg gratings with co-directional and counter-directional resultant chirps. Opt. Commun. 2016, 366, 194–199. [Google Scholar] [CrossRef]
- Osuch, T.; Markowski, K.; Gasior, P.; Jedrzejewski, K. Quasi-uniform fiber Bragg gratings. J. Lightwave Technol. 2015, 33, 4849–4856. [Google Scholar] [CrossRef]
- Swart, P.L.; Lacquet, B.M.; Chtcherbakov, A.A. Chirped fiber optic Bragg grating esophageal pressure sensor. In Proceedings of the Optical Fiber Sensors Conference, Portland, OR, USA, 10 May 2002; pp. 235–238. [Google Scholar]
- Bieda, M.S.; Sobotka, P.; Woliński, T.R. Chirped fiber Bragg grating written in highly birefringent fiber in simultaneous strain and temperature monitoring. Appl. Opt. 2017, 56, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Tam, H.Y.; Albert, J. Chirped and tilted fiber Bragg grating edge filter for in-fiber sensor interrogation. In Proceedings of the CLEO: Science and Innovations 2011, Baltimore, MD, USA, 1–6 May 2011; pp. 1–2. [Google Scholar]
First Author | Ref. | Fiber Type | Inscription Method | CFBG Length | FWHM | Chirp Rate | Sensitivity |
---|---|---|---|---|---|---|---|
Standard CFBGs | |||||||
Korganbayev | [35] | SMF | Phase mask | 50 mm | 40 nm | 0.8 nm/mm | 10.2 pm/°C |
Korganbayev | [35] | SMF | Phase mask | 15 mm | 20 nm | 1.33 nm/mm | 10.2 pm/°C |
Saccomandi | [38] | SMF | Phase mask | 15 mm | 10 nm | 0.67 nm/mm | 10.4 pm/°C |
Palumbo | [36] | SMF | Phase mask | 45 mm | 56 nm | 1.24 nm/mm | ~10 pm/°C |
Nand | [40] | SMF, H2-loaded | Argon-ion laser | 15 mm | 28.4 nm | 1.89 nm/mm | ~10 pm/°C |
Bettini | [57] | SMF | Phase mask | 30 mm | 45 nm | 1.5 nm/mm | |
Specialty CFBGs | |||||||
Marques | [58] | PMMA step-index | KrF laser, phase mask | 25 mm | 3.9 nm | 0.16 nm/mm | −131 pm/°C 1.77 pm/με |
Min | [37] | BDK-doped POF | KrF laser, phase mask | 10 mm | 0.2–1.2 nm | −56.7 pm/°C 0.71 pm/με | |
Idrisov | [59] | Birefring. SMF | Excimer laser, draw tower | 5 mm | 0.5 nm | 0.1 nm/mm | 12.3 pm/°C |
Voigtlander | [62] | SMF | Ti: sapphire, tunable mask | 20 mm | Up to 2 nm | ||
Xiao | [60] | Tapered MMF | Excimer laser, phase mask | 3.5 mm | 5.5 nm | 1.57 nm/mm | −5.2 nm/RIU |
Qiao | [63] | SMF regener | Excimer laser, phase mask | 20 mm | 26.3 nm | 1.31 nm/mm | 15.1 pm/°C |
Bernier | [61] | SMF | Ti:sapphire, phase mask | 25 mm | 85 nm | 3.4 nm/mm | |
Bernier | [61] | SMF, H2-loaded | Ti:sapphire, phase mask | 25 mm | 206 nm | 8.24 nm/mm | |
Bernier | [61] | SMF, H2-loaded | Ti:sapphire, phase mask | 35 mm | 310 nm | 8.85 nm/mm |
First Author | Ref. | Application | Detected Parameter | Sensor Parameters | Interrogation and Detection |
---|---|---|---|---|---|
Tosi | [74] | RF thermal ablation monitoring | Temperature profile in tissue | CFBG, L = 15 mm, FWHM = 33 nm | Analysis of CFBG spectral regions |
Saccomandi | [38] | Laser ablation monitoring | Temperature profile in tissue | CFBG, L = 15 mm, FWHM = 10 nm | Detection of central wavel. and FWHM |
Korganbayev | [35] | Laser ablation thermal profiling | Temperature profile in tissue | CFBG, L = 50 mm, FWHM = 40 nm | Spectral reconstruction, white light setup |
Palumbo | [36] | RF bipolar resection monitoring | Temperature profile in tissue | CFBG, L = 45 mm, FWHM = 56 nm | Spectral reconstruction, scan. laser setup |
Nand | [40] | Positioning of heat source | Temperature hot-spot location | CFBG, L = 15 mm, FWHM = 28 nm | CFBG spectra analysis via FFT |
Bettini | [57] | Structural health monitoring | 3-point strain gradient | CFBG, L = 30 mm, FWHM = 45 nm | Spectral reconstruction, white light setup |
Yashiro | [41] | Monitoring CFRP damage | Multi-point strain peaks | CFBG, L = 30 mm, FWHM ≈ 8 nm | Spectral detection, analysis of strain discontinuities |
Yandy | [75] | Detect CFRP defect position | Strain in defect points | CFBG, FWHM ≈ 1 nm | Spectral detection and group delay analysis |
Takeda | [76] | Delamination grown in CFRP | Strain discontinuities | CFBG, L = 50 mm, FWHM ≈ 5 nm | Spectral detection, analysis of strain pattern |
Wei | [34] | Measure velocity of detonation | Velocity of elongation of CFBG | CFBG, L ≈ 40 mm, FWHM ≈ 30 nm | Dual CFBG, measure CFBG length. |
Rodriguez | [77] | Detonation and shock wave propag. | Time response of CFBG elongation | CFBG, L = 10–200 mm, 0.35−3.45 nm/mm | High-speed photodetection |
Wydra | [78] | Transmission line sag monitoring | Elongation of CFBG | CFBG, L = 1.7 mm, ψ = 0.1 nm/mm | Detection of spectral shift and FWHM |
Chang | [53] | 2-dimensional inclinometer | Refractive index discontinuities | Etched CFBGs, Diameter 12 μm, L = 7 mm | 2 etched CFBGs, mounted on xy tilt system |
Chang | [79] | 2-dimensional inclinometer | Refractive index discontinuities | Etched CFBGs, L = 20 mm | 2 etched CFBGs, mounted on xy tilt system |
Chang | [80] | Liquid-level vertical indicator | Refractive index discontinuity | Etched CFBG, Diameter 12 μm, FWHM = 9.3 nm | White light setup, CFBG in liquid |
Osuch | [81] | Temperature independent inclinometer | Tilt angle and temperature | Dual-taper CFBG, L = 20 mm, ψ = 0.135 nm/mm | White light setup, spectral analysis |
Swart | [81] | Pressure and position sensing | Pressure and position | CFBG, L = 100 mm, FWHM = 1.1 nm | Mach-Zehnder setup, RF detector |
Wang | [82] | Strain measurement | Distributed strain | CFBGs, L = 17 mm | 2-CFBG system, linear chirp interrogation |
Liu | [83] | Strain and temperature measurement | Distributed strain and temperature | CFBG, L ≈ 115 mm, Birefr. fiber | Mach-Zehnder Interferometer |
Osuch | [84] | Strain measurement | Strain/force | Dual-taper CFBG, L = 20 mm, Two-sided taper | White light setup, spectral analysis |
Sun | [84] | Refractive index measurement | Refractive index change | LPG/CFBG, L ≈ 20 mm, FWHM = 16 nm | Cladding mode analysis LPG-induced |
Duraibabu | [85] | Dual temper. profile + pressure | Temperature profile, pressure | EFPI/CFBG, FWHM ≈ 3 nm | White light setup, dual sensor |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosi, D. Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications. Sensors 2018, 18, 2147. https://doi.org/10.3390/s18072147
Tosi D. Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications. Sensors. 2018; 18(7):2147. https://doi.org/10.3390/s18072147
Chicago/Turabian StyleTosi, Daniele. 2018. "Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications" Sensors 18, no. 7: 2147. https://doi.org/10.3390/s18072147
APA StyleTosi, D. (2018). Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications. Sensors, 18(7), 2147. https://doi.org/10.3390/s18072147