Fabrication of a Urea Biosensor for Real-Time Dynamic Fluid Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent
2.2. Preparation of Porous Silk Fibroin Membrane and Urease Immobilization
2.3. Urease Activity Assay
2.4. Amination of Screen-Printed Carbon Electrodes
2.5. Fabrication of Urea Biosensor Flow System
2.5.1. Cylindrical Microfluidic PDMS Chamber Fabrication
2.5.2. Housing Design
2.5.3. Flow System Configuration
3. Results and Discussion
3.1. Urease Immobilization on SF Membrane
3.2. Modification of Electrode’s Surface
3.3. Real-Time Monitoring of Urea Concentration
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Narasimhan, L.R.; Goodman, W.; Patel, C.K.N. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc. Natl. Acad. Sci. USA 2001, 98, 4617–4621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, H.; Negishi, A.; Nozaki, K. Carbon Sensor Electrode and Process for Producing the Same. U.S. Patent 5,503,728, 2 April 1996. [Google Scholar]
- Chin, H.J.; Kim, S. Chronic kidney disease in Korea. Korean J. Med. 2009, 76, 511–514. [Google Scholar]
- Haynes, R.J.; Winearls, C.G. Chronic kidney disease. Surgery 2010, 28, 525–529. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Jin, D.C. Current status of dialysis therapy for ESRD patients in Korea. J. Korean Med. Assoc. 2013, 56, 562–568. [Google Scholar] [CrossRef]
- Jin, D.C.; Yun, S.R.; Lee, S.W.; Han, S.W.; Kim, W.; Park, J.; Kim, Y.K. Current characteristics of dialysis therapy in Korea: 2016 registry data focusing on diabetic patients. Kidney Res. Clin. Pract. 2018, 37, 20. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.C.; Han, J.S. Renal replacement therapy in Korea, 2012. Kidney Res. Clin. Pract. 2014, 33, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.C.; Yun, S.R.; Lee, S.W.; Han, S.W.; Kim, W.; Park, J.; Kim, Y.K. Lessons from 30 years’ data of Korean end-stage renal disease registry, 1985–2015. Kidney Res. Clin. Pract. 2015, 34, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Sahney, R.; Puri, B.K.; Anand, S. Enzyme coated glass pH-electrode: Its fabrication and applications in the determination of urea in blood samples. Anal. Chim. Acta 2005, 542, 157–161. [Google Scholar] [CrossRef]
- Rafiq, K.; Mai, H.D.; Kim, J.K.; Woo, J.M.; Moon, B.M.; Park, C.H.; Yoo, H. Fabrication of a highly effective electrochemical urea sensing platform based on urease-immobilized silk fibroin scaffold and aminated glassy carbon electrode. Sens. Actuators B Chem. 2017, 251, 472–480. [Google Scholar] [CrossRef]
- Ali, S.M.U.; Ibupoto, Z.H.; Salman, S.; Nur, O.; Willander, M.; Danielsson, B. Selective determination of urea using urease immobilized on ZnO nanowires. Sens. Actuators B Chem. 2011, 160, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Eggenstein, C.; Borchardt, M.; Diekmann, C.; Gründig, B.; Dumschat, C.; Cammann, K.; Knoll, M.; Spener, F. A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer. Biosens. Bioelectron. 1999, 14, 33–41. [Google Scholar] [CrossRef]
- Bisht, V.; Takashima, W.; Kaneto, K. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials 2005, 26, 3683–3690. [Google Scholar]
- Sun, W.; Yang, M.; Gao, R.; Jiao, K. Electrochemical determination of ascorbic acid in room temperature ionic liquid BPPF6 modified carbon paste electrode. Electroanalysis 2007, 19, 1597–1602. [Google Scholar] [CrossRef]
- Ahuja, T.; Kumar, D.; Singh, N.; Biradar, A.M. Potentiometric urea biosensor based on multi-walled carbon nanotubes (MWCNTs)/silica composite material. Mater. Sci. Eng. C 2011, 31, 90–94. [Google Scholar] [CrossRef]
- Bisht, V.; Takashima, W.; Kaneto, K. A novel thin film urea biosensor based on copolymer poly (N-3-aminopropylpyrrole-co-pyrrole) film. Surf. Coat. Technol. 2005, 198, 231–236. [Google Scholar]
- Lakard, B.; Magnin, D.; Deschaume, O.; Vanlancker, G.; Glinel, K.; Demoustier-Champagne, S.; Nysten, B.; Jonas, A.M.; Bertrand, P.; Yunus, S. Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline. Biosens. Bioelectron. 2011, 26, 4139–4145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilbault, G.G.; Montalvo, J.G., Jr. Urea-specific enzyme electrode. J. Am. Chem. Soc. 1969, 91, 2164–2165. [Google Scholar] [CrossRef] [PubMed]
- Bertocchi, P.; Compagnone, D.; Palleschi, G. Amperometric ammonium ion and urea determination with enzyme-based probes. Biosens. Bioelectron. 1996, 11, 1–10. [Google Scholar] [CrossRef]
- Lim, T.; Lee, S.Y.; Yang, J.; Hwang, S.Y.; Ahn, Y. Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. BioChip J. 2017, 11, 109–115. [Google Scholar] [CrossRef]
- Hong, J.; Sung, G.Y. Screening for kidney malfunction using injection moulded plastic urinalysis cartridge. BioChip J. 2016, 10, 111–117. [Google Scholar] [CrossRef]
- Dhawan, G.; Sumana, G.; Malhotra, B.D. Recent developments in urea biosensors. Biochem. Eng. J. 2009, 44, 42–52. [Google Scholar] [CrossRef]
- Salimi, A.; Sharifi, E.; Noorbakhsh, A.; Soltanian, S. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophys. Chem. 2007, 125, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Tomar, M.; Gupta, V. NiO nanoparticle-based urea biosensor. Biosens. Bioelectron. 2013, 41, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-C.; Do, J.-S. Urea biosensor based on PANi (urease)-Nafion®/Au composite electrode. Biosens. Bioelectron. 2004, 20, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-C.; Do, J.-S. Amperometric ammonium ion sensor based on polyaniline-poly (styrene sulfonate-co-maleic acid) composite conducting polymeric electrode. Sens. Actuators B Chem. 2006, 115, 102–108. [Google Scholar] [CrossRef]
- Stasyuk, N.; Smutok, O.; Gayda, G.; Vus, B.; Koval’chuk, Y.; Gonchar, M. Bi-enzyme l-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosens. Bioelectron. 2012, 37, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Motonaka, J.; Miyata, K.; Faulkner, L.R. Micro Enzyme-sensor with osmium complex and a porous carbon for measuring uric acid. Anal. Lett. 1994, 27, 1–13. [Google Scholar] [CrossRef]
- Moon, B.M.; Kim, D.-K.; Park, H.J.; Ju, H.W.; Lee, O.J.; Kim, J.-H.; Lee, J.M.; Lee, J.S.; Park, C.H. Fabrication and Characterization of Three-Dimensional Silk Fibroin Scaffolds Using a Mixture of Salt/Sucrose. Macromol. Res. 2014, 22, 1268–1274. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Devnani, H.; Bahadur, A. Immobilization of urease in alginate beads for urea estimation. Research 2015, 2. [Google Scholar] [CrossRef]
- Pizzariello, A.; Stredansky, M.; Stredanska, S.; Strendanska, S.; Miertus, S. Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator. Talanta 2001, 54, 763–772. [Google Scholar] [CrossRef]
- Ahmed, R.; Tripathy, N.; Hahn, Y.B. Highly stable urea sensor based on ZnO nanorods directly grown on Ag/glass electrodes. Sens. Actuators B Chem. 2014, 194, 290–295. [Google Scholar] [CrossRef]
- Nguyen, N.S.; Das, G.; Yoon, H.H. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 2016, 77, 372–377. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Lee, J.; Moon, B.M.; Seo, Y.B.; Park, C.H.; Park, M.; Sung, G.Y. Fabrication of a Urea Biosensor for Real-Time Dynamic Fluid Measurement. Sensors 2018, 18, 2607. https://doi.org/10.3390/s18082607
Kim K, Lee J, Moon BM, Seo YB, Park CH, Park M, Sung GY. Fabrication of a Urea Biosensor for Real-Time Dynamic Fluid Measurement. Sensors. 2018; 18(8):2607. https://doi.org/10.3390/s18082607
Chicago/Turabian StyleKim, Kyunghee, Jeongeun Lee, Bo Mi Moon, Ye Been Seo, Chan Hum Park, Min Park, and Gun Yong Sung. 2018. "Fabrication of a Urea Biosensor for Real-Time Dynamic Fluid Measurement" Sensors 18, no. 8: 2607. https://doi.org/10.3390/s18082607
APA StyleKim, K., Lee, J., Moon, B. M., Seo, Y. B., Park, C. H., Park, M., & Sung, G. Y. (2018). Fabrication of a Urea Biosensor for Real-Time Dynamic Fluid Measurement. Sensors, 18(8), 2607. https://doi.org/10.3390/s18082607