Odor Discrimination by Similarity Measures of Abstract Odor Factor Maps from Electronic Noses
Abstract
:1. Introduction
2. Methodology
2.1. Algorithm for the Decomposition of Signal Model
- (1)
- Step 1: obtain an initial . The slabs of are stringed out horizontally as follows:Through principal component analysis of , the top score vectors are used to construct :
- (2)
- Step 2: obtain an initial . The slabs of are stringed out vertically as follows:The first loadings that are obtained from principal component analysis of are used to construct as follows:
- (3)
- Step 3: calculate by and :
- (4)
- Step 4: calculate by and :
- (5)
- Step 5: calculate by and :
- (6)
- Step 6: calculate residual sum of squares (SSR):
- (7)
- Repeat Steps (3), (4), (5) and (6) until SSR reaches preset value.
2.2. The Construction of AOFMs
2.3. Similarity Measure of AOFMs
3. Materials and Methods
3.1. Instruments
3.2. Sample and Measurement Condition
3.3. Data Processing
4. Results and Discussion
4.1. The AOFMs of Tobacco Smalls and Pipe Tobacco
4.2. Similarity Measure of AOFM
4.3. Other Methods
4.3.1. PCA
4.3.2. SIMCA
4.3.3. PARAFAC and PARAFAC2
4.4. Comparison
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mori, K.; Nagao, H.; Yoshihara, Y. The olfactory bulb: Coding and processing of odor molecule information. Science 1999, 286, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Bartlett, P.N. Performance definition and standardization of electronic noses. Sens. Actuators B Chem. 1996, 33, 60–67. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Mohtasebi, S.S.; Ghasemi-Varnamkhasti, M.; Ahmadi, H. Application of MOS based electronic nose for the prediction of banana quality properties. Measurement 2016, 82, 105–114. [Google Scholar] [CrossRef]
- Biondi, E.; Blasioli, S.; Galeone, A.; Spinelli, F.; Cellini, A.; Lucchese, C.; Braschi, I. Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta 2014, 129, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Di Sanzo, R.; Cefaly, V.; Cefaly, W.; Carabetta, S.; Serra, D.; Fuda, S. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: An electronic-nose-based approach. Food Chem. 2013, 141, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Huang, X.; Teye, E.; Gu, F.; Gu, H. Nondestructive detection of fish freshness during its preservation by combining electronic nose and electronic tongue techniques in conjunction with chemometric analysis. Anal. Methods 2013, 6, 529–536. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Liu, Y.; Xu, X.; Zhou, G. Species discrimination among three kinds of puffer fish using an electronic nose combined with olfactory sensory evaluation. Sensors 2012, 12, 12562–12571. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Y.; Cai, Q.; Zhang, Y.M. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method. Sensors 2012, 12, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Giungato, P.; Laiola, E.; Nicolardi, V. Evaluation of Industrial Roasting Degree of Coffee Beans by Using an Electronic Nose and a Stepwise Backward Selection of Predictors. Food Anal. Methods 2017, 10, 3424–3433. [Google Scholar] [CrossRef]
- Upadhyay, R.; Sehwag, S.; Mishra, H.N. Electronic nose guided determination of frying disposal time of sunflower oil using fuzzy logic analysis. Food Chem. 2017, 221, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Wang, J. The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem. 2017, 230, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Van Geffen, W.H.; Bruins, M.; Kerstjens, H.A. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: A pilot study. J. Breath Res. 2016, 10, 036001. [Google Scholar] [CrossRef] [PubMed]
- Brekelmans, M.P.; Niki, F.; Paul, B.; Lieuwe, D.B.; Peter, J.S.; Paul, P.T.; Daniëlle, M.G. Smelling the Diagnosis: The Electronic Nose as Diagnostic Tool in Inflammatory Arthritis. A Case-Reference Study. PLoS ONE 2016, 11, e0151715. [Google Scholar] [CrossRef] [PubMed]
- Zakko, L.; Chan, D.K.; Visrodia, K.; Allen, J.; Lutzke, L.S.; Clemens, M.A.; Leggett, C.L.; Wang, K.K. Detection of Barrett’s Esophagus via Electronic-Nose Device Analysis of Exhaled Volatile Organic Compounds in Breath Samples. Gastroenterology 2017, 152, S164. [Google Scholar] [CrossRef]
- Lidia, E.; Laura, C.; Selena, S. Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring. Sensors 2016, 16, 1548. [Google Scholar] [CrossRef]
- Szulczyński, B.; Wasilewski, T.; Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Gębicki, J. Different Ways to Apply a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality with Respect to Odour Nuisance in a Vicinity of Municipal Processing Plants. Sensors 2017, 17, 2671. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Jia, P.; He, P.; Duan, S.; Yan, J.; Wang, L. A Novel Semi-Supervised Method of Electronic Nose for Indoor Pollution Detection Trained by M-S4VMs. Sensors 2016, 16, 1462. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Toko, K. Towards an Electronic Dog Nose: Surface Plasmon Resonance Immunosensor for Security and Safety. Sensors 2014, 14, 16586. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Lim, J.W.; Lee, S.M.; Huh, J.S.; Lee, D.D. Fabrication and characterization of micro-gas sensor for nitrogen oxides gas detection. Sens. Actuators B Chem. 2000, 64, 31–36. [Google Scholar] [CrossRef]
- Alizadeh, M.; Pirsa, S.; Faraji, N. Determination of Lemon Juice Adulteration by Analysis of Gas Chromatography Profile of Volatile Organic Compounds Extracted with Nano-Sized Polyester-Polyaniline Fiber. Food Anal. Methods 2017, 10, 2092–2101. [Google Scholar] [CrossRef]
- Jeon, D.B.; Hong, Y.S.; Lee, G.H.; Park, Y.M.; Lee, C.M.; Nho, E.Y.; Choi, J.Y.; Jamila, N.; Khan, N.; Kim, K.S. Determination of volatile organic compounds, catechins, caffeine and theanine in Jukro tea at three growth stages by chromatographic and spectrometric methods. Food Chem. 2017, 219, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Skov, T.; Bro, R. A new approach for modelling sensor based data. Sens. Actuators B Chem. 2005, 106, 719–729. [Google Scholar] [CrossRef]
- Liang, Z.; Tian, F.; Yang, S.X.; Zhang, C.; Sun, H.; Liu, T. Study on Interference Suppression Algorithms for Electronic Noses: A Review. Sensors 2018, 18, 1179. [Google Scholar] [CrossRef] [PubMed]
- Gancarz, K.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Wiącek, D.; Nawrocka, A.; Tadla, M.; Rusinek, R. Application of electronic nose with MOS sensors to prediction of rapeseed quality. Measurement 2017, 103, 227–234. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.X.; Yang, Y.J.; Yan, Y.N.; Wang, W.Y.; Wu, H.Z.; Ren, Z.H. A Rapid Discrimination of Authentic and Unauthentic Radix Angelicae Sinensis Growth Regions by Electronic Nose Coupled with Multivariate Statistical Analyses. Sensors 2014, 14, 20134–20148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.; Du, J.; Benlian, X.U.; Lu, M. Modified unsupervised discriminant projection with an electronic nose for the rapid determination of Chinese mitten crab freshness. Anal. Methods 2017, 9, 1806–1815. [Google Scholar] [CrossRef]
- Ordukaya, E.; Karlik, B. Quality Control of Olive Oils Using Machine Learning and Electronic Nose. J. Food Qual. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, X.R.; Wang, G.L.; Nie, L.X.; Yang, Y.J.; Wu, H.Z.; Wei, F.; Zhang, J.; Tian, J.G.; Lin, R.C. Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics. J. Pharm. Biomed. Anal. 2012, 70, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Men, H.; Fu, S.; Yang, J.; Cheng, M.; Shi, Y.; Liu, J. Comparison of SVM, RF and ELM on an Electronic Nose for the Intelligent Evaluation of Paraffin Samples. Sensors 2018, 18, 285. [Google Scholar] [CrossRef] [PubMed]
- Padilla, M.; Montoliu, I.; Pardo, A.; Perera, A.; Marco, S. Feature extraction on three way enose signals. Sens. Actuators B Chem. 2006, 116, 145–150. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V.; Todeschini, R. Classification of multiway analytical data based on MOLMAP approach. Anal. Chim. Acta 2007, 605, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Men, H.; Shi, Y.; Jiao, Y.; Gong, F.; Liu, J. Electronic nose sensors data feature mining: A synergetic strategy for the classification of beer. Anal. Methods 2018, 10, 2016–2025. [Google Scholar] [CrossRef]
- Yan, J.; Duan, S.; Huang, T.; Huang, T.; Wang, L. Hybrid feature matrix construction and feature selection optimization-based multi-objective QPSO for electronic nose in wound infection detection. Sens. Rev. 2016, 36, 23–33. [Google Scholar] [CrossRef]
- Wen, T.; Yan, J.; Huang, D.; Lu, K.; Deng, C.; Zeng, T.; Yu, S.; He, Z. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing. Sensors 2018, 18, 388. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Huang, D.; Jia, Y.; Lu, K.; Huang, Y.; Wen, T.; Zeng, T.; Zhong, S.; Xie, Q. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach. Sensors 2017, 17, 1434. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Jia, P.; Qiao, S.; Duan, S. Enhancing electronic nose performance based on a novel QPSO-RBM technique. Sens. Actuators B Chem. 2018, 259, 241–249. [Google Scholar] [CrossRef]
- Guo, W.; Gan, F.; Kong, H.; Wu, J. Signal model of electronic noses with metal oxide semiconductor. Chemom. Intell. Lab. Syst. 2015, 143, 130–135. [Google Scholar] [CrossRef]
- Bai, W.; Ren, M.; Hopke, P.K.; Gan, F. A Similarity Measure for Two-Dimensional Fluorescent Spectra. Appl. Spectrosc. 2009, 63, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Cellini, A.; Blasioli, S.; Biondi, E.; Bertaccini, A.; Braschi, I.; Spinelli, F. Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis. Sensors 2017, 17, 2596. [Google Scholar] [CrossRef] [PubMed]
No. | Training Set | Predicted Set | The Value of POR | Whether Be Separated |
---|---|---|---|---|
Pipe Tobacco | I | II | 2.87 × 10−209~9.14 × 10−88 | Yes |
III | →0.00 1 | Yes | ||
II | I | 5.32 × 10−59~1.81 × 10−14 | Yes | |
III | →0.00 1 | Yes | ||
III | I | →0.00 1 | Yes | |
II | →0.00 1 | Yes | ||
Tobacco Smalls | I | II | →0.00 1 | Yes |
III | →0.00 1 | Yes | ||
II | I | →0.00 1 | Yes | |
III | →0.00 1 | Yes | ||
III | I | →0.00 1 | Yes | |
II | →0.00 1 | Yes |
Label | Separation of Samples 1 | |||||
---|---|---|---|---|---|---|
Similarity Measure of AOFM | PCA | SIMCA | PARAFAC | PARAFAC2 | ||
Pipe Tobacco | I-II | + | −(+) | − | −(+) | −(+) |
I-III | ++ | ++ | ++ | ++ | ++ | |
II-III | ++ | ++ | ++ | ++ | ++ | |
Tobacco Smalls | I-II | ++ | − | − | − | − |
I-III | ++ | − | − | − | − | |
II-III | ++ | − | − | − | − |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Kong, H.; Wu, J.; Gan, F. Odor Discrimination by Similarity Measures of Abstract Odor Factor Maps from Electronic Noses. Sensors 2018, 18, 2658. https://doi.org/10.3390/s18082658
Guo W, Kong H, Wu J, Gan F. Odor Discrimination by Similarity Measures of Abstract Odor Factor Maps from Electronic Noses. Sensors. 2018; 18(8):2658. https://doi.org/10.3390/s18082658
Chicago/Turabian StyleGuo, Weiqing, Haohui Kong, Junzhang Wu, and Feng Gan. 2018. "Odor Discrimination by Similarity Measures of Abstract Odor Factor Maps from Electronic Noses" Sensors 18, no. 8: 2658. https://doi.org/10.3390/s18082658
APA StyleGuo, W., Kong, H., Wu, J., & Gan, F. (2018). Odor Discrimination by Similarity Measures of Abstract Odor Factor Maps from Electronic Noses. Sensors, 18(8), 2658. https://doi.org/10.3390/s18082658