A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Pretreatment for Alumina Ceramic Plates
2.2. Hot-Pressing Sintering
2.3. Thinning
2.4. Post-Fire Metallization
3. Measurement and Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, R.W.; Evans, J.L.; Jacobsen, P.; Thompson, J.R.; Christopher, M. The changing automotive environment: High-temperature electronics. IEEE Trans. Electron. Pack. Manuf. 2004, 27, 164–176. [Google Scholar] [CrossRef]
- Boyce, M.P. Gas Tubine Engineering Handbook, 3rd ed.; Gulf Professional Publishing: Burlington, MA, USA, 2006. [Google Scholar]
- Cheng, H.T.; Shao, G.; Ebadi, S.; Ren, X.H.; Harris, K.; Liu, J.; Xu, C.Y.; An, L.N.; Gong, X. Evanescent-mode-resonat or-based and antenna-integrated wireless passive pressure sensors for harsh-environment applications. Sens. Actuators A Phys. 2014, 220, 22–33. [Google Scholar] [CrossRef]
- William, W.C.; Atkinson, G.M. Passive Wireless sensor application for NASA’s extreme aeronautical environments. IEEE Sens. 2014, 14, 3745–3753. [Google Scholar]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Capello, A.; Negro, C.D. An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modeling. Remote Sens. Environ. 2012, 119, 197–207. [Google Scholar] [CrossRef]
- San, H.S.; Li, Y.; Song, Z.J.; Yu, Y.X.; Chen, X.Y. Self-Packaging Fabrication of Silicon–Glass-Based Piezoresistive Pressure Sensor. IEEE Electron Device Lett. 2013, 34, 789–791. [Google Scholar] [CrossRef]
- San, H.S.; Zhang, H.; Zhang, Q.; Yu, Y.X.; Chen, X.Y. Silicon–Glass-based single piezoresistive pressure sensors for harsh environment applications. J. Micromech. Microeng. 2013, 23, 075020. [Google Scholar] [CrossRef]
- Liu, Q.M.; Du, L.D.; Zhao, Z.; Xiao, L.; Sun, X.J. Localized Si–Au eutectic bonding around sunken pad for fabrication of a capacitive absolute pressure sensor. Sens. Actuators A Phys. 2013, 201, 241–245. [Google Scholar] [CrossRef]
- Yang, J. A Silicon carbide wireless temperature sensing system for high temperature applications. Sensors 2013, 13, 1884–1901. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.P.; Dao, D.V.; Nakamura, K. The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review. J. Microelectromech. Syst. 2015, 24, 1663–1677. [Google Scholar] [CrossRef]
- Noraini, M.; Burhanuddin, Y.M.; Azrul, A.H.; Faisal, M.Y. Development of high temperature resistant of 500 °C employing silicon carbide (3C–SiC) based MEMS pressure sensor. Microsyst. Technol. 2015, 21, 319–330. [Google Scholar]
- Rao, S.; Pangallo, G. 4H–SiC p-i-n diode as Highly Linear Temperature Sensor. IEEE Trans. Electron Devices 2016, 63, 414–418. [Google Scholar] [CrossRef]
- Okojie, R.; Lukco, D.; Nguyen, V.; Savrun, E. 4H–SiC Piezoresistive Pressure Sensors at 800 °C With Observed Sensitivity Recovery. IEEE Trans. Electron Device Lett. 2015, 36, 174–176. [Google Scholar] [CrossRef]
- Fonseca, M.A. Polymer/Ceramic Wireless MEMS Pressure Sensors for Harsh Environments: High Temperature and Biomedical Applications. Ph.D. Thesis, Georgia Institute of Technology, Atalanta, GA, USA, 2007. [Google Scholar]
- Xiong, J.J.; Li, Y.; Hong, Y.P.; Zhang, B.Z.; Cui, T.H.; Tan, Q.L.; Zheng, S.J.; Liang, T. Wireless LTCC-based Capactive Pressure Sensor for Harsh Environment. Sens. Actuators A Phys. 2013, 197, 30–37. [Google Scholar] [CrossRef]
- Tan, Q.L.; Kang, H.; Xiong, J.J.; Qiu, L.; Zhang, W.D.; Li, C.; Ding, L.Q.; Zhang, X.S.; Yang, M.L. A Wireless Passive Pressure Micro-sensor Fabricated in HTCC MEMS Technology for Harsh Environments. Sensors 2013, 13, 9896–9899. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.L.; Luo, T.; Xiong, J.J.; Kang, H.; Ji, X.X.; Zhang, Y.; Yang, M.L.; Wang, X.L.; Xue, C.Y.; Liu, J.; et al. A Harsh Environment-Oriented Wireless Passive Temperature Sensor Realized by LTCC Technology. Sensors 2014, 14, 4154–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.J.; Zheng, S.J.; Hong, Y.P.; Li, J.; Wang, Y.L.; Wang, W.; Tan, Q.L. Measurement of wireless pressure sensors fabricated in high temperature co-fired ceramic MEMS technology. J. Zhejiang Univ. Sci. C 2013, 14, 258–263. [Google Scholar] [CrossRef]
- Nopper, R.; Niekrawietz, R.; Teindl, L. Wireless readout of passive LC sensors. IEEE Trans. Instrum. Meas. 2010, 59, 2450–2457. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Composition | Al2O3 |
Density | 3.89 g/cm3 |
Surface roughness | <30 nm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Sun, B.; Xue, Y.; Xiong, J. A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor. Sensors 2018, 18, 2676. https://doi.org/10.3390/s18082676
Li C, Sun B, Xue Y, Xiong J. A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor. Sensors. 2018; 18(8):2676. https://doi.org/10.3390/s18082676
Chicago/Turabian StyleLi, Chen, Boshan Sun, Yanan Xue, and Jijun Xiong. 2018. "A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor" Sensors 18, no. 8: 2676. https://doi.org/10.3390/s18082676
APA StyleLi, C., Sun, B., Xue, Y., & Xiong, J. (2018). A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor. Sensors, 18(8), 2676. https://doi.org/10.3390/s18082676