Classification of Overt and Covert Speech for Near-Infrared Spectroscopy-Based Brain Computer Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Acquisition
2.3. Experimental Procedure
2.4. Data Analysis
3. Results
3.1. General Classification
3.2. Pairwise Classification
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bruno, M.-A.; Schnakers, C.; Damas, F.; Pellas, F.; Lutte, I.; Bernheim, J.; Majerus, S.; Moonen, G.; Goldman, S.; Laureys, S. Locked-in syndrome in children: Report of five cases and review of the literature. Pediatr. Neurol. 2009, 41, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Delargy, M. Locked-in syndrome. BMJ 2005, 330, 406. [Google Scholar] [CrossRef] [PubMed]
- Casanova, E.; Lazzari, R.E.; Lotta, S.; Mazzucchi, A. Locked-in syndrome: Improvement in the prognosis after an early intensive multidisciplinary rehabilitation. Arch. Phys. Med. Rehabil. 2003, 84, 862–867. [Google Scholar] [CrossRef]
- Blain, S.; Mihailidis, A.; Chau, T. Assessing the potential of electrodermal activity as an alternative access pathway. Med. Eng. Phys. 2008, 30, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Laureys, S.; Pellas, F.; van Eeckhout, P.; Ghorbel, S.; Schnakers, C.; Perrin, F.; Berre, J.; Faymonville, M.-E.; Pantke, K.-H.; Damas, F.; et al. The locked-in syndrome: What is it like to be conscious but paralyzed and voiceless? Prog. Brain Res. 2005, 150, 495–611. [Google Scholar] [PubMed]
- Tai, K. Near-Infrared Spectroscopy Signal Classification: Towards a Brain-Computer Interface. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2008. [Google Scholar]
- Watanabe, E.; Yamashita, Y.; Maki, A.; Ito, Y.; Koizumi, H. Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans. Neurosci. Lett. 1996, 205, 41–44. [Google Scholar] [CrossRef]
- Watanabe, E.; Maki, A.; Kawaguchi, F.; Takashiro, K.; Yamashita, Y.; Koizumi, H.; Mayanagi, Y. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci. Lett. 1998, 256, 49–52. [Google Scholar] [CrossRef]
- Ko, L. Near-Infrared Spectroscopy as an Access Channel: Prefrontal Cortex Inhibition during an Auditory Go-No-Go Task. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2009. [Google Scholar]
- Sitaram, R.; Zhang, H.; Guan, C.; Thulasidas, M.; Hoshi, Y.; Ishikawa, A.; Shimizu, K.; Birbaumer, N. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage 2007, 34, 1416–1427. [Google Scholar] [CrossRef] [PubMed]
- Strangman, G.; Boas, D.A.; Sutton, J.P. Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 2002, 52, 679–693. [Google Scholar] [CrossRef]
- Hirth, C.; Obrig, H.; Villringer, K.; Thiel, A.; Bernarding, J.; Mühlnickel, W.; Flor, H.; Dirnagl, U.; Villringer, A. Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy. Neuroreport 1996, 7, 1977–1981. [Google Scholar] [CrossRef] [PubMed]
- Heekeren, H.R.; Kohl, M.; Obrig, H.; Wenzel, R.; von Pannwitz, W.; Matcher, S.J.; Dirnagl, U.; Cooper, C.E.; Villringer, A. Non-invasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation. J. Cereb. Blood Flow Metab. 1999, 19, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Hock, C.; Villringer, K.; Müller-Spahn, F.; Wenzel, R.; Heekeren, H.; Schuh-Hofer, S.; Hofmann, M.; Minoshima, S.; Schwaiger, M.; Dirnagl, U.; et al. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)-correlation with simultaneous rcbf-pet measurements. Brain Res. 1997, 755, 293–303. [Google Scholar] [CrossRef]
- Hoshi, Y.; Tamura, M. Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks. NeuroImage 1997, 5, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Fallgatter, A.; Müller, T.J.; Strik, W. Prefrontal hypooxygenation during language processing assessed with near-infrared spectroscopy. Neuropsychobiology 1998, 37, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Sakatani, K.; Xie, Y.; Lichty, W.; Li, S.; Zuo, H. Language-activated cerebral blood oxygenation and hemodynamic changes of the left prefrontal cortex in poststroke aphasic patients: A near-infrared spectroscopy study. Stroke 1998, 29, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Takeuchi, T.; Sakai, K.L. Temporal cortex activation during speech recog-nition: An optical topography study. Cognition 1999, 73, B55–B66. [Google Scholar] [CrossRef]
- Quaresima, V.; Ferrari, M.; van der Sluijs, M.C.; Menssen, J.; Colier, W.N. Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive near-infrared multi-point measurements. Brain Res. Bull. 2002, 59, 235–243. [Google Scholar] [CrossRef]
- Minagawa-Kawai, Y.; Mori, K.; Furuya, I.; Hayashi, R.; Sato, Y. Assessing cerebral representations of short and long vowel categories by NIRS. Neuroreport 2002, 13, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Cannestra, A.F.; Wartenburger, I.; Obrig, H.; Villringer, A.; Toga, A.W. Functional assessment of broca’s area using near-infrared spectroscopy in humans. Neuroreport 2003, 14, 1961–1965. [Google Scholar] [CrossRef] [PubMed]
- Naito, M.; Michioka, Y.; Ozawa, K.; Kiguchi, M.; Kanazawa, T. A communication means for totally locked-in als patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans. Inf. Syst. 2007, 90, 1028–1037. [Google Scholar] [CrossRef]
- Murguialday, A.R.; Hill, J.; Bensch, M.; Martens, S.; Halder, S.; Nijboer, F.; Schoelkopf, B.; Birbaumer, N.; Gharabaghi, A. Transition from the locked-in to the completely locked-in state: A physiological analysis. Clin. Neurophysiol. 2011, 122, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Ayala, G.; Furdea, A.; Takano, K.; Ruf, C.A.; Flor, H.; Birbaumer, N. Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy. Neurology 2014, 82, 1930–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skipper, J.I.; Goldin-Meadow, S.; Nusbaum, H.C.; Small, S.L. Speech-associated gestures, Broca’s area, and the human mirror system. Brain Lang. 2007, 101, 260–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwitz, B.; Amunts, K.; Bhattacharyya, R.; Patkin, D.; Jeffries, K.; Zilles, K.; Braun, A.R. Activation of Broca’s area during the production of spoken and signed language: A combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 2003, 41, 1868–1876. [Google Scholar] [CrossRef]
- Obermaier, B.; Muller, G.; Pfurtscheller, G. Virtual keyboard controlled by spontaneous EEG activity. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Li, Y.; Long, J.; Gu, Z. Surfing the internet with a BCI mouse. J. Neural Eng. 2012, 9, 036012. [Google Scholar] [CrossRef] [PubMed]
- Rebsamen, B.; Teo, C.L.; Zeng, Q.; Ang, M.H., Jr.; Burdet, E.; Guan, C.; Zhang, H.; Laugier, C. Controlling a wheelchair indoors using thought. IEEE Intell. Syst. 2007, 22, 18–24. [Google Scholar] [CrossRef]
- Giussani, C.; Roux, F.-E.; Lubrano, V.; Gaini, S.M.; Bello, L. Review of language organisation in bilingual patients: What can we learn from direct brain mapping? Acta Neurochir. 2007, 149, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Coyle, S. Near-Infrared Spectroscopy for Brain Computer Interfacing. Ph.D. Thesis, National University of Ireland Maynooth, Maynooth, Ireland, 2005. [Google Scholar]
- Homan, R.W.; Herman, J.; Purdy, P. Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 1987, 66, 376–382. [Google Scholar] [CrossRef]
- Keller, S.S.; Highley, J.R.; Garcia-Finana, M.; Sluming, V.; Rezaie, R.; Roberts, N. Sulcal variability, stereological measurement and asymmetry of Broca’s area on MR images. J. Anat. 2007, 211, 534–555. [Google Scholar] [CrossRef] [PubMed]
- Lynch, P.J. Human Head and Brain Diagram. 2006. Available online: https://commons.wikimedia. org/wiki/File:Human_head_and_brain_diagram.svg (accessed on 15 July 2018).
- Schecklmann, M.; Ehlis, A.; Plichta, M.; Fallgatter, A. Influence of muscle activity on brain oxygenation during verbal fluency assessed with functional near-infrared spectroscopy. Neuroscience 2010, 171, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Holper, L.; Wolf, M. Single-trial classification of motor imagery differing in task complexity: A functional near-infrared spectroscopy study. J. Neuroeng. Rehabil. 2011, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, M.J.; Plichta, M.M.; Ehlis, A.-C.; Fallgatter, A.J. Optical topography during a Go–NoGo task assessed with multi-channel near-infrared spectroscopy. Behav. Brain Res. 2005, 160, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Hull, R.; Bortfeld, H.; Koons, S. Near-infrared spectroscopy and cortical responses to speech production. Open Neuroimag. J. 2009, 3, 26–30. [Google Scholar] [CrossRef] [PubMed]
Participant | Handedness | DiffOvCov | SepCov | SepOv |
---|---|---|---|---|
1 | Right | 91.67/100.00 | 87.50/86.11 | 69.44/91.67 |
2 | Right | 89.58/96.53 | 76.39/75.00 | 72.22/81.94 |
3 | Right | 100.00/100.00 | 98.61/69.44 | 87.50/86.11 |
4 | Right | 100.00/99.31 | 75.00/54.17 | 97.22/100.00 |
5 | Right | 87.50/47.22 | 76.39/75.00 | 52.78/88.89 |
6 | Both | 100.00/100.00 | 87.50/80.56 | 66.67/84.72 |
7 | Both | 100.00/100.00 | 95.83/93.06 | 91.67/77.78 |
8 | Left | 92.36/100.00 | 97.22/100.00 | 93.06/94.44 |
mean | 95.14/92.88 | 86.81/79.17 | 78.82/88.19 | |
t(8) | 23.68/6.56 | 20.03/12.36 | 11.15/28.41 | |
p-value | <0.001 | <0.001 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamavuako, E.N.; Sheikh, U.A.; Gilani, S.O.; Jamil, M.; Niazi, I.K. Classification of Overt and Covert Speech for Near-Infrared Spectroscopy-Based Brain Computer Interface. Sensors 2018, 18, 2989. https://doi.org/10.3390/s18092989
Kamavuako EN, Sheikh UA, Gilani SO, Jamil M, Niazi IK. Classification of Overt and Covert Speech for Near-Infrared Spectroscopy-Based Brain Computer Interface. Sensors. 2018; 18(9):2989. https://doi.org/10.3390/s18092989
Chicago/Turabian StyleKamavuako, Ernest Nlandu, Usman Ayub Sheikh, Syed Omer Gilani, Mohsin Jamil, and Imran Khan Niazi. 2018. "Classification of Overt and Covert Speech for Near-Infrared Spectroscopy-Based Brain Computer Interface" Sensors 18, no. 9: 2989. https://doi.org/10.3390/s18092989
APA StyleKamavuako, E. N., Sheikh, U. A., Gilani, S. O., Jamil, M., & Niazi, I. K. (2018). Classification of Overt and Covert Speech for Near-Infrared Spectroscopy-Based Brain Computer Interface. Sensors, 18(9), 2989. https://doi.org/10.3390/s18092989