A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing
Abstract
:1. Introduction
2. Principle of Operation
3. Sensor Fabrication and Experimental Results
3.1. Sensor Fabrication
3.2. Experimental Setup
3.3. Calibration
3.4. Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Zhao, Y.; Xia, F.; Peng, Y.; Tong, R. High sensitivity temperature sensor based on fiber air-microbubble Fabry-Perot interferometer with PDMS-filled hollow-core fiber. Sens. Actuators A Phys. 2018, 275, 60–66. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Fu, H.; Jia, Z.; Zhang, T. Temperature dependence of microhole-based fiber Fabry–Perot interferometric sensors fabricated by excimer laser. Opt. Eng. 2018, 57, 056104. [Google Scholar] [CrossRef]
- Wu, J.; Yao, M.; Xiong, F.; Zhang, A.P.; Tam, H.; Wai, P.K.A. Optical Fiber-Tip Fabry–Pérot Interferometric Pressure Sensor Based on an In Situ μ-Printed Air Cavity. J. Lightwave Technol. 2018, 36, 3618–3623. [Google Scholar] [CrossRef]
- Liu, J.; Jia, P.; Zhang, H.; Tian, X.; Liang, H.; Hong, Y.; Liang, T.; Liu, W.; Xiong, J. Fiber-optic Fabry-Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications. Appl. Opt. 2018, 57, 4211–4215. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Fang, G.; Li, Z.; Liang, H.; Hong, Y.; Liang, T.; Xiong, J. “Bellows spring-shaped” ultrasensitive fiber-optic Fabry-Perot interferometric strain sensor. Sens. Actuators A Phys. 2018, 277, 85–91. [Google Scholar] [CrossRef]
- Tian, J.; Jiao, Y.; Fu, Q.; Ji, S.; Li, Z.; Quan, M.; Yao, Y. A Fabry–Perot Interferometer Strain Sensor Based on Concave-Core Photonic Crystal Fiber. J. Lightwave Technol. 2018, 36, 1952–1958. [Google Scholar] [CrossRef]
- Majchrowicz, D.; Hirsch, M.; Wierzba, P.; Bechelany, M.; Viter, R.; Jędrzejewska-Szczerska, M. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers. Sensors 2016, 16, 416. [Google Scholar] [CrossRef]
- Hirsch, M.; Majchrowicz, D.; Wierzba, P.; Weber, M.; Bechelany, M.; Jędrzejewska-Szczerska, M. Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors. Sensors 2017, 17, 261. [Google Scholar] [CrossRef]
- Karpienko, K.; Wróbel, M.S.; Jędrzejewska-Szczerska, M. Determination of refractive index dispersion using fiber-optic low-coherence Fabry–Perot interferometer: implementation and validation. Opt. Eng. 2014, 53, 077103. [Google Scholar] [CrossRef]
- Jia, P.; Fang, G.; Liang, T.; Hong, Y.; Tan, Q.; Chen, X.; Liu, W.; Xue, C.; Liu, J.; Zhang, W.; et al. Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application. Sens. Actuators B Chem. 2017, 244, 226–232. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, X.; He, W.; Chen, J. High-Resolution and Temperature-Insensitive Fiber Optic Refractive Index Sensor Based on Fresnel Reflection Modulated by Fabry–Perot Interference. J. Lightwave Technol. 2010, 28, 2799–2803. [Google Scholar] [CrossRef]
- Isak, S.; Martin, Z.; Ove, A.; Fredrik, A.; Leslie, P.; Aleksandra, F. Optical measurement of the gas number density in a Fabry–Perot cavity. Meas. Sci. Technol. 2013, 24, 105207. [Google Scholar]
- Martini, J.; Kiesel, P.; Roe, J.; Bruce, R.H. Glucose concentration monitoring using a small Fabry-Perot etalon. J. Biomed. Opt. 2009, 14, 034029. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Sen, M.B.; Murphy, K.A.; Claus, R.O. Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements. Electron. Lett. 1996, 32, 247–249. [Google Scholar] [CrossRef]
- Liu, G.; Hou, W.; Han, M. Unambiguous Peak Recognition for a Silicon Fabry-Perot Interferometric Temperature Sensor. J. Lightwave Technol. 2018, 36, 1970–1978. [Google Scholar] [CrossRef]
- Liu, T.; Wu, M.; Rao, Y.; Jackson, D.A.; Fernando, G.F. A multiplexed optical fibre-based extrinsic Fabry-Perot sensor system for in-situ strain monitoring in composites. Smart Mater. Struct. 1998, 7, 550. [Google Scholar] [CrossRef]
- Wei, T.; Han, Y.; Tsai, H.-L.; Xiao, H. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett. 2008, 33, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Huang, H. Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances. Appl. Opt. 2008, 47, 2821–2828. [Google Scholar] [CrossRef]
- Qi, B.; Pickrell, G.R.; Xu, J.C.; Zhang, P.; Duan, Y.H.; Peng, W.; Huang, Z.Y.; Huo, W.; Xiao, H.; May, R.G.; et al. Novel data processing techniques for dispersive white light interferometer. Opt. Eng. 2003, 42, 3165–3171. [Google Scholar] [CrossRef]
- Han, M.; Zhang, Y.; Shen, F.; Pickrell, G.R.; Wang, A. Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors. Opt. Lett. 2004, 29, 1736–1738. [Google Scholar] [CrossRef]
- Liu, T.; Fernando, G.F. A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements. Rev. Sci. Instrum. 2000, 71, 1275–1278. [Google Scholar] [CrossRef]
- Jiang, Y. Fourier Transform White-Light Interferometry for the Measurement of Fiber-Optic Extrinsic Fabry–PÉrot Interferometric Sensors. IEEE Photon. Technol. Lett. 2007, 20, 75–77. [Google Scholar] [CrossRef]
- Belleville, C.; Duplain, G. White-light interferometric multimode fiber-optic strain sensor. Opt. Lett. 1993, 18, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Navruz, I.; Ari, F.; Bilsel, M.; Al-Mashhadani, Z.A. Enhancing refractive index sensitivity using micro-tapered long-period fiber grating inscribed in biconical tapered fiber. Opt. Fiber Technol. 2018, 45, 201–207. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Zhang, C.; Miao, C.; Zhao, J.; Xu, W. High sensitivity and low loss open-cavity Mach-Zehnder interferometer based on multimode interference coupling for refractive index measurement. Opt. Laser Technol. 2019, 109, 193–198. [Google Scholar] [CrossRef]
- Melo, L.; Burton, G.; Kubik, P.; Wild, P. Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition. Sens. Actuators B Chem. 2016, 236, 537–545. [Google Scholar] [CrossRef]
- Xinyu, W.; Shuguang, L.; Junjun, W.; Shuhuan, Z.; Ying, G.; Yundong, L. Ultrahigh-sensitivity refractive-index sensor based on gold-coated side-polished photonic crystal fiber. Appl. Phys. Express 2018, 11, 102202. [Google Scholar]
Sensors | Sensitivity (nm/RIU) | Range (RIU) |
---|---|---|
Micro-tapered long-period fiber grating [24] | 8188.1 | 1.332–1.3328 |
Open-cavity Mach–Zehnder interferometer [25] | −1364.343 | 1.333–1.3468 |
Inline Mach–Zehnder interferometer coated with hafnium oxide [26] | 1307 | 1.3327–1.3478 |
Gold-coated side-polished photonic crystal fiber [27] | −40400 | 1.415–1.42 |
EFPI RI sensor (This work) | 979.7 | 1.346–1.388 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Yang, B.; Zhang, J.; Yin, Y.; Niu, Y.; Ding, M. A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing. Sensors 2019, 19, 96. https://doi.org/10.3390/s19010096
Yang B, Yang B, Zhang J, Yin Y, Niu Y, Ding M. A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing. Sensors. 2019; 19(1):96. https://doi.org/10.3390/s19010096
Chicago/Turabian StyleYang, Bowen, Biyao Yang, Ji Zhang, Yiheng Yin, Yanxiong Niu, and Ming Ding. 2019. "A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing" Sensors 19, no. 1: 96. https://doi.org/10.3390/s19010096
APA StyleYang, B., Yang, B., Zhang, J., Yin, Y., Niu, Y., & Ding, M. (2019). A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing. Sensors, 19(1), 96. https://doi.org/10.3390/s19010096