A Multi-Camera Rig with Non-Overlapping Views for Dynamic Six-Degree-of-Freedom Measurement
Abstract
:1. Introduction
2. System Hardware
3. Dynamic 6-DOF Measurement Principle
3.1. Camera Model
3.2. Feature Points Extraction Method
3.3. Space Resection Adjustment Method
3.4. Feature Points Correspondence Method
- As for a point on the real image, we calculate the distances from to all the points on the predicted image and select its nearest neighbor that has the shortest distance. If the ratio of the shortest distance to the second-shortest distance is less than the threshold , we continue to the next step. If not, we remove the point as an outlier.
- We calculate the distances from to all the points on the real image. Then we check whether has the shortest distance, and whether the ratio of the shortest distance to the second-shortest distance is less than . When both criteria are fulfilled, the nearest point couple (, ) are proved to be correct.
- By repeating the above process, we complete the feature points matching (see Figure 6). The value of is set based on the deployment of LED markers.
3.5. Dynamic Measurement Process
4. Measurement Error Simulation
5. Experiment
5.1. Static Measurement Experiment
5.1.1. Measurement Repeatability
5.1.2. Distance Measurement
5.2. Dynamic Measurement Experiment
5.2.1. Operating Speed
5.2.2. 6-DOF Measurement
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Jamshidi, J.; Kayani, A.; Iravani, P.; Maropoulos, P.G.; Summers, M.D. Manufacturing and assembly automation by integrated metrology systems for aircraft wing fabrication. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 25–36. [Google Scholar] [CrossRef]
- Lee, D.; Ku, N.; Kim, T.W.; Kim, J.; Lee, K.Y.; Son, Y.S. Development and application of an intelligent welding robot system for shipbuilding. Robot. Comput. Integr. Manuf. 2011, 27, 377–388. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Wang, J. Assembly auxiliary system for narrow cabins of spacecraft. Chin. J. Mech. Eng. 2015, 28, 1080–1088. [Google Scholar] [CrossRef]
- Franceschini, F.; Galetto, M.; Maisano, D.; Mastrogiacomo, L. Large-scale dimensional metrology (LSDM): From tapes and theodolites to multi-sensor systems. Int. J. Precis. Eng. Manuf. 2014, 15, 1739–1758. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, Y.; Xu, J.; Chen, K. Laser tracker based robotic assembly system for large scale peg-hole parts. In Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, Hong Kong, China, 4–7 June 2014; pp. 574–578. [Google Scholar] [CrossRef]
- Keller, F.; Sternberg, H. Multi-Sensor Platform for Indoor Mobile Mapping: System Calibration and Using a Total Station for Indoor Applications. Remote Sens. 2013, 5, 5805–5824. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, R.; Nisch, S.; Schönberg, A.; Demeester, F.; Renders, S. Performance evaluation of iGPS for industrial applications. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Vilar-Montesinos, M. A Fog Computing and Cloudlet Based Augmented Reality System for the Industry 4.0 Shipyard. Sensors 2018, 18, 1798. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zheng, L.; Deng, H.; Zhang, H. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion. Sensors 2017, 17, 1037. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; You, Z.; Zhao, K.; Wang, Z.; Ouyang, C.; Cao, Y. A 6-DOF Navigation Method based on Iterative Closest Imaging Point Algorithm. Sci. Rep. 2017, 7, 17414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, N.U.; Naeem, A.; Pasha, M.A.; Jadoon, T.; Yuen, C. Indoor Positioning Using Visible LED Lights: A Survey. ACM Comput. Surv. 2015, 48, 1–32. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Zhou, F.; Duh, H.B.; Billinghurst, M. Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In Proceedings of the 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, Cambridge, UK, 15–18 September 2008; pp. 193–202. [Google Scholar] [CrossRef]
- Nee, A.; Ong, S.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. CIRP Ann. 2012, 61, 657–679. [Google Scholar] [CrossRef]
- Bae, H.; Golparvar-Fard, M.; White, J. High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Visual. Eng. 2013, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Pustka, D.; Hülß, J.; Willneff, J.; Pankratz, F.; Huber, M.; Klinker, G. Optical outside-in tracking using unmodified mobile phones. In Proceedings of the 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Atlanta, GA, USA, 5–8 November 2012; pp. 81–89. [Google Scholar] [CrossRef]
- Krum, D.M.; Suma, E.A.; Bolas, M. Augmented reality using personal projection and retroreflection. Pers. Ubiquitous Comput. 2012, 16, 17–26. [Google Scholar] [CrossRef]
- OptiTrack—Motion Capture Systems. Available online: www.optitrack.com (accessed on 3 December 2018).
- Khairuddin, A.R.; Talib, M.S.; Haron, H. Review on simultaneous localization and mapping (SLAM). In Proceedings of the 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), George Town, Malaysia, 27–29 November 2015; pp. 85–90. [Google Scholar] [CrossRef]
- Mautz, R.; Tilch, S. Survey of optical indoor positioning systems. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Welch, G.; Bishop, G.; Vicci, L.; Brumback, S.; Keller, K.; Colucci, D. HiBall tracker: High-performance wide-area tracking for virtual and augmented environments. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, London, UK, 20–22 December 1999; pp. 1–10. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Evtushenko, Y. Generalized Lagrange multiplier technique for nonlinear programming. J. Optim. Theory Appl. 1977, 21, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Watson, G.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2008, 81, 155. [Google Scholar] [CrossRef]
- Luhmann, T. Precision potential of photogrammetric 6DOF pose estimation with a single camera. ISPRS J. Photogramm. Remote Sens. 2009, 64, 275–284. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, G.; Wei, Z.; Sun, J. Novel calibration method for non-overlapping multiple vision sensors based on 1D target. Opt. Lasers Eng. 2011, 49, 570–577. [Google Scholar] [CrossRef]
Parameter | The Single Camera | The Multi-Camera Rig |
---|---|---|
(°) | 0.0147 | 0.0087 |
(°) | 0.0067 | 0.0084 |
(°) | 0.0038 | 0.0065 |
(mm) | 0.715 | 0.629 |
(mm) | 1.191 | 0.754 |
(mm) | 0.292 | 0.528 |
Position | Multi-Camera Rig | Laser Tracker | Measurement Error |
---|---|---|---|
1 | 900.567 | 900.330 | 0.237 |
2 | 900.436 | 900.242 | 0.194 |
3 | 900.064 | 900.247 | −0.183 |
4 | 899.970 | 900.381 | −0.411 |
5 | 899.848 | 900.318 | −0.470 |
6 | 899.594 | 900.207 | −0.613 |
7 | 899.968 | 900.347 | −0.379 |
8 | 900.588 | 900.185 | 0.403 |
9 | 900.863 | 900.342 | 0.521 |
Angular Velocity | Feature Correspondence Without Motion Prediction | Feature Correspondence With Motion Prediction |
---|---|---|
5°/s | 0 | 0 |
10°/s | 0 | 0 |
20°/s | 1 | 1 |
30°/s | 6 | 0 |
40°/s | 18 | 3 |
50°/s | 20 | 7 |
Parameter | Standard Deviation |
---|---|
Angle about axis (°) | 0.0137 |
Angle about axis (°) | 0.0140 |
Angle about axis (°) | 0.0147 |
position (mm) | 0.829 |
position (mm) | 0.640 |
position (mm) | 0.834 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Z.; Ren, Y.; Yang, L.; Lin, J.; Zhu, J. A Multi-Camera Rig with Non-Overlapping Views for Dynamic Six-Degree-of-Freedom Measurement. Sensors 2019, 19, 250. https://doi.org/10.3390/s19020250
Niu Z, Ren Y, Yang L, Lin J, Zhu J. A Multi-Camera Rig with Non-Overlapping Views for Dynamic Six-Degree-of-Freedom Measurement. Sensors. 2019; 19(2):250. https://doi.org/10.3390/s19020250
Chicago/Turabian StyleNiu, Zhiyuan, Yongjie Ren, Linghui Yang, Jiarui Lin, and Jigui Zhu. 2019. "A Multi-Camera Rig with Non-Overlapping Views for Dynamic Six-Degree-of-Freedom Measurement" Sensors 19, no. 2: 250. https://doi.org/10.3390/s19020250
APA StyleNiu, Z., Ren, Y., Yang, L., Lin, J., & Zhu, J. (2019). A Multi-Camera Rig with Non-Overlapping Views for Dynamic Six-Degree-of-Freedom Measurement. Sensors, 19(2), 250. https://doi.org/10.3390/s19020250