Label-Free Capacitive Biosensor for Detection of Cryptosporidium
Abstract
:1. Introduction
2. Materials
3. Experimental Methods
3.1. Sensor Fabrication
3.2. Antibody Immobilization
3.3. Electrochemical Measurements
3.4. Contact Angle Measurements
3.5. Sample Preparation and Measurement
3.6. FITC Measurements
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Huang, K.; Qin, S.; Zhao, Y.; Pan, C. Comparison of viability and infectivity of Cryptosporidium parvum oocysts stored in potassium dichromate solution and chlorinated tap water. Vet. Parasitol. 2007, 150, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tang, F.; Yang, C.-T.; Zhao, X.; Wang, J.; Thierry, B.; Bansal, V.; Dai, J.; Zhou, X. Fast and Highly Sensitive Detection of Pathogens Wreathed with Magnetic Nanoparticles Using Dark-Field Microscopy. ACS Sens. 2018, 3, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Bridle, H.; Kersaudy-Kerhoas, M.; Miller, B.; Gavriilidou, D.; Katzer, F.; Innes, E.A.; Desmulliez, M.P.Y. Detection of Cryptosporidium in miniaturised fluidic devices. Water Res. 2012, 46, 1641–1661. [Google Scholar] [CrossRef] [PubMed]
- Tzipori, S.; Widmer, G. A hundred-year retrospective on cryptosporidiosis. Trends Parasitol. 2008, 24, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snelling, W.J.; Xiao, L.; Ortega-Pierres, G.; Lowery, C.J.; Moore, J.E.; Rao, J.R.; Smyth, S.; Millar, B.C.; Rooney, P.J.; Matsuda, M.; et al. Cryptosporidiosis in developing countries. J. Infect. Dev. Ctries 2007, 1, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Baeumner, A.; Humiston, M. Detection of Viable Oocysts of Cryptosporidium p arvum Following Nucleic Acid Sequence Based Amplification. Anal. Chem. 2001, 73, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Bridge, J.W.; Oliver, D.M.; Chadwick, D.; Godfray, H.C.J.; Heathwaite, L.; Kay, D.; Maheswaram, R.; Mcgonigle, D.F.; Nichols, G.; Pickup, R.; et al. Engaging with the water sector for public health benefits: Waterborne pathogens and diseases in developed countries. Bull. World Health Organ. 2010, 88, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Corso, P.S.; Kramer, M.H.; Blair, K.A.; Addiss, D.G.; Davis, J.P.; Haddix, A.C. Cost of illness in the 1993 waterborne Cryptosporidium outbreak, Milwaukee, Wisconsin. Emerg. Infect. Dis. 2003, 9, 426–431. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, X.; Chen, J.; Jin, W.; Zhou, X.; Li, N.; Wang, L.; Xiao, L. Occurrence, source, and human infection potential of Cryptosporidium and giardia spp. in source and tap water in Shanghai, China. Appl. Environ. Microbiol. 2011, 77, 3609–3616. [Google Scholar] [CrossRef]
- Wohlsen, T.; Bates, J.; Gray, B.; Katouli, M. Evaluation of Five Membrane Filtration Methods for Recovery of Cryptosporidium and Giardia Isolates from Water Samples. Appl. Environ. Microbiol. 2004, 70, 2318–2322. [Google Scholar] [CrossRef]
- Gennaccaro, A.L.; Scott, T.M.; Rose, J.B. Assessment of Methods for Detection of Infectious Cryptosporidium Oocysts and Giardia Cysts in Reclaimed Effluents. Appl. Environ. Microbiol. 2003, 69, 5380–5388. [Google Scholar] [CrossRef]
- Gosling, J.P. A decade of development in immunoassay methodology. Clin. Chem. 1990, 36, 1408–1427. [Google Scholar] [PubMed]
- Xiao, L.; Alderisio, K.A.; Jiang, J. Detection of Cryptosporidium oocysts in water: Effect of the number of samples and analytic replicates on test results. Appl. Environ. Microbiol. 2006, 72, 5942–5947. [Google Scholar] [CrossRef]
- Lechevallier, M.W.; Di Giovanni, G.D.; Jennifer, L.; Bukhari, Z.; Bukhari, S.; Rosen, J.S.; Frey, M.M.; Clancy, J.L.; Sobrinho, J. Comparison of Method 1623 and Cell Culture-PCR for Detection of Cryptosporidium spp. in Source Waters. Appl. Environ. Microbiol. 2003, 69, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Betancourt, W.; Peele, E.R.; Rose, J.B. Cryptosporidium parvum and Cyclospora cayetanensis: A review of laboratory methods for detection of these waterborne parasites. J. Microbiol. Methods 2002, 49, 209–224. [Google Scholar] [CrossRef]
- Sin, L.Y.M.; Mach, K.E.; Wong, P.K.; Liao, J.C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2014, 14, 225–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors 2015, 15, 30011–30031. [Google Scholar] [CrossRef] [Green Version]
- Samiei, E.; Luka, G.S.; Najjaran, H.; Hoorfar, M. Integration of biosensors into digital microfluidics: Impact of hydrophilic surface of biosensors on droplet manipulation. Biosens. Bioelectron. 2016, 81, 480–486. [Google Scholar] [CrossRef]
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef]
- Ray, S.; Mehta, G.; Srivastava, S. Label-free detection techniques for protein microarrays: Prospects, merits and challenges. Proteomics 2010, 10, 731–748. [Google Scholar] [CrossRef]
- Samiei, E.; Hoorfar, M. Biosensing on Digital Microfluidics: From Sample Preparation to Detection. In Miniature Fluidic Devices for Rapid Biological Detection; Oh, S.-H., Escobedo, C., Brolo, A.G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 171–205. ISBN 978-3-319-64747-0. [Google Scholar]
- Luka, G.S.; Nowak, E.; Kawchuk, J.; Hoorfar, M.; Najjaran, H. Portable device for the detection of colorimetric assays. R. Soc. Open Sci. 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Malvano, F.; Albanese, D.; Crescitelli, A.; Pilloton, R.; Esposito, E. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A. Biosensors 2016. [Google Scholar] [CrossRef] [PubMed]
- Mahadhy, A.; Ståhl-Wernersson, E.; Mattiasson, B.; Hedström, M. Use of a capacitive affinity biosensor for sensitive and selective detection and quantification of DNA—A model study. Biotechnol. Rep. 2014, 3, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Niazi, J.H.; Gu, M.B. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal. Chim. Acta 2009, 634, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Quershi, A.; Gurbuz, Y.; Kang, W.P.; Davidson, J.L. A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker. Biosens. Bioelectron. 2009, 25, 877–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrowood, M.J.; Sterling, C.R. Comparison of conventional staining methods and monoclonal antibody-based methods for Cryptosporidium oocyst detection. J. Clin. Microbiol. 1989, 27, 1490–1495. [Google Scholar] [PubMed]
- Stibbs, H.H.; Ongerth, J.E. Immunofluorescence detection of Cryptosporidium oocysts in fecal smears. J. Clin. Microbiol. 1986, 24, 517–521. [Google Scholar] [PubMed]
- Samiei, E.; Hoorfar, M. Systematic analysis of geometrical based unequal droplet splitting in digital microfluidics. J. Micromech. Microeng. 2015, 25, 055008. [Google Scholar] [CrossRef]
- Stepins, D.; Asmanis, G.; Asmanis, A. Measuring capacitor parameters using vector network analyzers. Electronics 2014, 18, 29–38. [Google Scholar] [CrossRef]
- Morita, S.; Namikoshi, A.; Hirata, T.; Oguma, K.; Katayama, H.; Ohgaki, S. Efficacy of UV Irradiation in Inactivating Cryptosporidium parvum Oocysts Efficacy of UV Irradiation in Inactivating Cryptosporidium parvum Oocysts. Appl. Environ. Microbiol. 2002, 68, 5387–5393. [Google Scholar] [CrossRef] [PubMed]
- Blume, T.; Neis, U. Improved wastewater disinfection by ultrasonic pre-treatment. Ultrason. Sonochem. 2004, 11, 333–336. [Google Scholar] [CrossRef]
- Simmons, O.D., III; Sobsey, M.D.; Christopher, D.; Schaefer, F.W., III; Francy, D.S.; Heaney, C.D. Concentration and Detection of Cryptosporidium Oocysts in Surface Water Samples by Method 1622 Using Ultrafiltratio. Appl. Environ. Microbiol. 2001, 67, 1123–1127. [Google Scholar] [CrossRef]
Technique | Filtration & Capacity | Concentration | Purification | Detection | Recovery (%) |
---|---|---|---|---|---|
ASTM, 1991, USEPA, 1996 (USA) | Cartridge filtration (1.0 µm) 100–1000 L | Centrifuged 1050× g 10 min | Percoll-sucrose density-gradient centrifuging | IFA, DIC microscopy | 0–100 |
Method 1622/1623: USEPA, 1999a, USEPA, 1999b (USA) | Membrane filter (Envirochek™ HV) 10–1000 L | Centrifuged 1100× g 15 min | Dynal IMS | 12–93 (21–100) | |
SOP 1999, SI No. 1524 ¥ (UK) | Genera filta-Max™ filter membranes | Dynal IMS | IFA, DIC microscopy | 30–50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luka, G.; Samiei, E.; Dehghani, S.; Johnson, T.; Najjaran, H.; Hoorfar, M. Label-Free Capacitive Biosensor for Detection of Cryptosporidium. Sensors 2019, 19, 258. https://doi.org/10.3390/s19020258
Luka G, Samiei E, Dehghani S, Johnson T, Najjaran H, Hoorfar M. Label-Free Capacitive Biosensor for Detection of Cryptosporidium. Sensors. 2019; 19(2):258. https://doi.org/10.3390/s19020258
Chicago/Turabian StyleLuka, George, Ehsan Samiei, Soroush Dehghani, Thomas Johnson, Homayoun Najjaran, and Mina Hoorfar. 2019. "Label-Free Capacitive Biosensor for Detection of Cryptosporidium" Sensors 19, no. 2: 258. https://doi.org/10.3390/s19020258
APA StyleLuka, G., Samiei, E., Dehghani, S., Johnson, T., Najjaran, H., & Hoorfar, M. (2019). Label-Free Capacitive Biosensor for Detection of Cryptosporidium. Sensors, 19(2), 258. https://doi.org/10.3390/s19020258